Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Lévy, Guillaume"'
Autor:
Lévy, Guillaume, Liu, Yanlin
Following the recent papers [9] and [10] by T. Gallay and V. \u{S}ver\'ak, in the line of work initiated by H. Feng and V. \u{S}ver\'ak in their paper [3], we prove the uniqueness of a solution of the axisymmetric Navier-Stokes equations without swir
Externí odkaz:
http://arxiv.org/abs/1801.10353
Autor:
Lévy, Guillaume
In this paper, we investigate the behavior of the Fourier transform on finite dimensional 2-step Lie groups and develop a general theory akin to that of the whole space or the torus. We provide a familiar framework in which computations are made sens
Externí odkaz:
http://arxiv.org/abs/1712.09880
Autor:
Lévy, Guillaume
In this paper, we draw on the ideas of [5] to extend the standard Serrin criterion [17] to an anisotropic version thereof. Because we work on weak solutions instead of strong ones, the functions involved have low regularity. Our method summarizes in
Externí odkaz:
http://arxiv.org/abs/1702.02814
Autor:
Lévy, Guillaume
In this paper, we extend our previous result from [16]. We prove that transport equations with rough coefficients do possess a uniqueness property. Our method relies strongly on duality and bears a strong resemblance with the well-known DiPerna-Lions
Externí odkaz:
http://arxiv.org/abs/1612.04138
Autor:
Band, Ram, Lévy, Guillaume
A finite discrete graph is turned into a quantum (metric) graph once a finite length is assigned to each edge and the one-dimensional Laplacian is taken to be the operator. We study the dependence of the spectral gap (the first positive Laplacian eig
Externí odkaz:
http://arxiv.org/abs/1608.00520
Autor:
Lévy, Guillaume
Publikováno v:
Comptes rendus de l'Acad\'emie des sciences. S\'erie I, Math\'ematique, Elsevier, 2016
In this Note, we study a transport-diffusion equation with rough coefficients and we prove that solutions are unique in a low-regularity class.
Externí odkaz:
http://arxiv.org/abs/1605.04137
Autor:
Lévy, Guillaume
Publikováno v:
In Journal de mathématiques pures et appliquées September 2018 117:123-145
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lévy, Guillaume
Publikováno v:
Analysis of PDEs [math.AP]. Université Pierre et Marie Curie (Paris 6), 2017. English
Analysis of PDEs [math.AP]. Université Pierre et Marie Curie-Paris VI, 2017. English. ⟨NNT : 2017PA066321⟩
Analysis of PDEs [math.AP]. Université Pierre et Marie Curie-Paris VI, 2017. English. ⟨NNT : 2017PA066321⟩
This thesis is devoted to the study of the laplacian properties in three fully distinct contexts.In a first part, it will be used to smooth solutions of equations coming from incompressible fluid mechanics.As an application, we will show a result in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::91617e9e0e28a94399102b4fda2ca910
https://hal.archives-ouvertes.fr/tel-01636224/document
https://hal.archives-ouvertes.fr/tel-01636224/document