Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Le, H. V."'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Le, H. V.
Publikováno v:
Commun. Math. Anal. 15, no. 2 (2013), 103-116
Let $\Omega \in L^1(S^{n-1})$ have mean value zero and satisfy the condition $$\sup_{\zeta' \in S^{n-1}} \int_{S^{n-1}} |\Omega(y')| (\ln |\zeta' \cdot y'|^{1})^{(\ln(e + \ln |\zeta' \cdot y'|^{1}))^{\beta}} \, d\sigma(y') \lt \infty \text{ for some
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=project_eucl::ff04a8fce8ce54ad9384a63f39d2d85b
http://projecteuclid.org/euclid.cma/1376053393
http://projecteuclid.org/euclid.cma/1376053393