Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Lawson, Blaine"'
Autor:
Xiuxiong Chen, Bourguignon, Jean-Pierre, Bryant, Robert L., Cheeger, Jeff, Colding, Tobias Holck, Donaldson, Simon, Futaki, Akito, Gluck, Herman, Gromov, Misha, Hitchin, Nigel, Lawson, Blaine, LeBrun, Claude, Toshiki Mabuchi, Shing-Tung Yau, Ziller, Wolfgang
Publikováno v:
Notices of the American Mathematical Society; Dec2024, Vol. 71 Issue 11, p1502-1519, 18p
Autor:
Lawson, Blaine, Wermer, John
We prove that if $K$ is a compact subset of an affine variety O = P^n - D (where D is a projective hypersuface), and if K is a compact subset of a closed analytic subvariety V \subset O, then the projective hull K^ of K has the property that K^ \cap
Externí odkaz:
http://arxiv.org/abs/0704.2849
Publikováno v:
American Journal of Mathematics, 2003 Aug 01. 125(4), 791-847.
Externí odkaz:
https://www.jstor.org/stable/25099198
We present a general framework for obtaining currential double transgression formulas on complex manifolds which can be seen as manifestations of Bott-Chern Duality. These results complement on one hand the simple transgression formulas obtained by H
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fcb01c4c2ec0a0d1ed5f5d3fef118f41
http://arxiv.org/abs/2003.14326
http://arxiv.org/abs/2003.14326
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Douglas, Gordon
Publikováno v:
Urban Design International; Jun2020, Vol. 25 Issue 2, p203-208, 6p
Autor:
Moore, Calvin C., Schochet, Claude L.
Publikováno v:
Global Analysis on Foliated Spaces; 2006, p285-293, 9p
Autor:
Shing-Tung Yau, Steve Nadis
A Fields medalist recounts his lifelong transnational effort to uncover the geometric shape—the Calabi-Yau manifold—that may store the hidden dimensions of our universe. Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathemati
Autor:
Steven G. Krantz
This book is about the concept of mathematical maturity. Mathematical maturity is central to a mathematics education. The goal of a mathematics education is to transform the student from someone who treats mathematical ideas empirically and intuitive