Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Lavrov, Mikhail"'
Let $G$ be a bipartite graph with bipartition $(X,Y)$. Inspired by a hypergraph problem, we seek an upper bound on the number of disjoint paths needed to cover all the vertices of $X$. We conjecture that a Hall-type sufficient condition holds based o
Externí odkaz:
http://arxiv.org/abs/2310.05248
An ordered graph is a graph with a linear ordering on its vertices. The online Ramsey game for ordered graphs $G$ and $H$ is played on an infinite sequence of vertices; on each turn, Builder draws an edge between two vertices, and Painter colors it r
Externí odkaz:
http://arxiv.org/abs/2210.05235
A hypergraph $\mathcal H$ is super-pancyclic if for each $A \subseteq V(\mathcal H)$ with $|A| \geq 3$, $\mathcal H$ contains a Berge cycle with base vertex set $A$. We present two natural necessary conditions for a hypergraph to be super-pancyclic,
Externí odkaz:
http://arxiv.org/abs/2006.15730
The Erd\H{o}s-Szekeres Theorem stated in terms of graphs says that any red-blue coloring of the edges of the ordered complete graph $K_{rs+1}$ contains a red copy of the monotone increasing path with $r$ edges or a blue copy of the monotone increasin
Externí odkaz:
http://arxiv.org/abs/2006.03703
In the language of hypergraphs, our main result is a Dirac-type bound: we prove that every $3$-connected hypergraph $H$ with $ \delta(H)\geq \max\{|V(H)|, \frac{|E(H)|+10}{4}\}$ has a hamiltonian Berge cycle. This is sharp and refines a conjecture by
Externí odkaz:
http://arxiv.org/abs/2004.08291
The Erd\H{o}s-Simonovits stability theorem states that for all \epsilon >0 there exists \alpha >0 such that if G is a K_{r+1}-free graph on n vertices with e(G) > ex(n,K_{r+1}) - \alpha n^2, then one can remove \epsilon n^2 edges from G to obtain an
Externí odkaz:
http://arxiv.org/abs/1910.00028
A graph $G$ arrows a graph $H$ if in every $2$-edge-coloring of $G$ there exists a monochromatic copy of $H$. Schelp had the idea that if the complete graph $K_n$ arrows a small graph $H$, then every "dense" subgraph of $K_n$ also arrows $H$, and he
Externí odkaz:
http://arxiv.org/abs/1906.02854
We solve four similar problems: For every fixed $s$ and large $n$, we describe all values of $n_1,\ldots,n_s$ such that for every $2$-edge-coloring of the complete $s$-partite graph $K_{n_1,\ldots,n_s}$ there exists a monochromatic (i) cycle $C_{2n}$
Externí odkaz:
http://arxiv.org/abs/1905.04657
A matching $M$ in a graph $G$ is connected if all the edges of $M$ are in the same component of $G$. Following \L uczak,there have been many results using the existence of large connected matchings in cluster graphs with respect to regular partitions
Externí odkaz:
http://arxiv.org/abs/1905.04653
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.