Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Laville, Guy"'
Autor:
Laville, Guy
We present an integral representation formula for a Dirichlet series whose coefficients are the values of the Liouville's arithmetic function.
Externí odkaz:
http://arxiv.org/abs/1301.2721
Autor:
Laville, Guy, Lehman, Eric
In classical function theory, a function is holomorphic if and only if it is complex analytic. For higher dimensional spaces it is natural to work in the context of Clifford algebras. The structures of these algebras depend on the parity of the dimen
Externí odkaz:
http://arxiv.org/abs/math/0502090
Autor:
Laville, Guy
Let R\_{0,n} be the Clifford algebra of the antieuclidean vector space of dimension n. The aim is to built a function theory analogous to the one in the C case. In the latter case, the product of two holomorphic functions is holomorphic, this fact is
Externí odkaz:
http://arxiv.org/abs/math/0502088
Autor:
Laville, Guy, Ramadanoff, Ivan
Publikováno v:
Advances in Clifford algebras 8 (1998) 2, 323-340
The aim of this paper is to put the fundations of a new theory of functions, called holomorphic Cliffordian, which should play an essential role in the generalization of holomorphic functions to higher dimensions. Let R\_{0,2m+1} be the Clifford alge
Externí odkaz:
http://arxiv.org/abs/math/0502066
Autor:
Laville, Guy, Ramadanoff, Ivan
The well-known Jacobi elliptic functions sn(z)$, $cn(z), dn(z) are defined in higher dimensional spaces by the following method. Consider the Clifford algebra of the antieuclidean vector space of dimension 2m+1. Let x be the identity mapping on the s
Externí odkaz:
http://arxiv.org/abs/math/0502073
Autor:
Laville, Guy, Ramadanoff, Ivan
Publikováno v:
Complex variables 45 (2001) 4,297-318
In the study of holomorphic functions of one complex variable, one well-known theory is that of elliptic functions and it is possible to take the zeta-function of Weierstrass as a building stone of this vast theory. We are working the analogue theory
Externí odkaz:
http://arxiv.org/abs/math/0502072
Autor:
Laville, Guy, Ramadanoff, Ivan
Publikováno v:
Comptes Rendus de l'Academie des Sciences. Serie 1, Mathematique 326 (1998) 307-310
Soit R\_{0,2m+1} l'alg\`{e}bre de Clifford de R^{2m+1} muni d'une forme quadratique de signature n\'{e}gative, D = \sum\_{i=0}^{2m+1} e\_i {\partial\over \partial x\_i}, \Delta le Laplacien ordinaire. Les fonctions holomorphes Cliffordiennes f sont l
Externí odkaz:
http://arxiv.org/abs/math/0502071
Autor:
Laville, Guy, Ramadanoff, Ivan
It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.
Externí odkaz:
http://arxiv.org/abs/math/0411090
Autor:
Laville, Guy.
Th.--Sci. math.--Paris 6, 1979.
Extr. en partie des Comptes rendus hebdomadaires des séances de l'Académie des sciences de Paris, 274, 1972, 554-556 ; 280, 1975, 777-779 ; 281, 1975, 145-147 ; 287, 1978, 129-130 ; de la Revue du CETHEDEC, 43
Extr. en partie des Comptes rendus hebdomadaires des séances de l'Académie des sciences de Paris, 274, 1972, 554-556 ; 280, 1975, 777-779 ; 281, 1975, 145-147 ; 287, 1978, 129-130 ; de la Revue du CETHEDEC, 43
Externí odkaz:
http://catalogue.bnf.fr/ark:/12148/cb36079601t
Autor:
Laville, Guy1 glaville@math.unicaen.fr, Ramadanoff, Ivan1 rama@math.unicaen.fr
Publikováno v:
Complex Variables. Sep2002, Vol. 47 Issue 9, p787. 16p.