Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Laurent Gosse"'
Publikováno v:
Engineering Reports, Vol 2, Iss 2, Pp n/a-n/a (2020)
Abstract This article proposes an efficient explicit numerical model with a relaxed stability condition for the simulation of heat, air, and moisture transfer in porous material. Three innovative approaches are combined to solve the system of two dif
Externí odkaz:
https://doaj.org/article/ff6c1091de51452c9f2c060449cd7f77
Publikováno v:
Vietnam Journal of Mathematics. 49:651-671
Dissipative kinetic models inspired by neutron transport are studied in a (1 + 1)-dimensional context: first, in the two-stream approximation, then in the general case of continuous velocities. Both are known to relax, in the diffusive scaling, towar
Autor:
Laurent Gosse, Nicolas Vauchelet
Publikováno v:
SIAM journal on numerical analysis
58 (2020): 1092–1116. doi:10.1137/19M1239829
info:cnr-pdr/source/autori:Gosse L.; Vauchelet N./titolo:A truly two-dimensional, asymptotic-preserving scheme for a discrete model of radiative transfer/doi:10.1137%2F19M1239829/rivista:SIAM journal on numerical analysis (Print)/anno:2020/pagina_da:1092/pagina_a:1116/intervallo_pagine:1092–1116/volume:58
58 (2020): 1092–1116. doi:10.1137/19M1239829
info:cnr-pdr/source/autori:Gosse L.; Vauchelet N./titolo:A truly two-dimensional, asymptotic-preserving scheme for a discrete model of radiative transfer/doi:10.1137%2F19M1239829/rivista:SIAM journal on numerical analysis (Print)/anno:2020/pagina_da:1092/pagina_a:1116/intervallo_pagine:1092–1116/volume:58
For a four-stream approximation of the kinetic model of radiative transfer with isotropic scattering, a numerical scheme endowed with both truly 2D well-balanced and diffusive asymptotic-preserving properties is derived, in the same spirit as what wa
Autor:
Gabriella Bretti, Laurent Gosse
Publikováno v:
Partial Differential Equations and Applications. 2
Autor:
Gabriella Bretti, Laurent Gosse
Publikováno v:
SN Partial Differential Equations and Applications 31 (2021): 1–34. doi:10.1007/s42985-021-00087-7
info:cnr-pdr/source/autori:Gabriella Bretti; Laurent Gosse/titolo:Diffusive limit of a two-dimensional well-balanced approximation to a kinetic model of chemotaxis/doi:10.1007%2Fs42985-021-00087-7/rivista:SN Partial Differential Equations and Applications/anno:2021/pagina_da:1/pagina_a:34/intervallo_pagine:1–34/volume:31
info:cnr-pdr/source/autori:Gabriella Bretti; Laurent Gosse/titolo:Diffusive limit of a two-dimensional well-balanced approximation to a kinetic model of chemotaxis/doi:10.1007%2Fs42985-021-00087-7/rivista:SN Partial Differential Equations and Applications/anno:2021/pagina_da:1/pagina_a:34/intervallo_pagine:1–34/volume:31
A $$(2+2)$$ -dimensional kinetic equation, directly inspired by the run-and-tumble modeling of chemotaxis dynamics is studied so as to derive a both “2D well-balanced” and “asymptotic-preserving” numerical approximation. To this end, exact st
Publikováno v:
Engineering Reports
Engineering Reports, John Wiley & Sons Ltd, 2020, 2 (2), pp.e12099. ⟨10.1002/eng2.12099⟩
Engineering Reports, Vol 2, Iss 2, Pp n/a-n/a (2020)
Engineering Reports, John Wiley & Sons Ltd, 2020, 2 (2), pp.e12099. ⟨10.1002/eng2.12099⟩
Engineering Reports, Vol 2, Iss 2, Pp n/a-n/a (2020)
41 pages, 13 figures, 2 tables, 32 references. Other author's papers can be downloaded at http://www.denys-dutykh.com/; International audience; This article proposes an efficient explicit numerical model with a relaxed stability condition for the sim
Autor:
Laurent Gosse
Publikováno v:
Computers & Fluids. 169:365-372
A general methodology, which consists in deriving two-dimensional finite-difference schemes which involve numerical fluxes based on Dirichlet-to-Neumann maps (or Steklov–Poincare operators), is first recalled. Then, it is applied to several types o
Autor:
Laurent Gosse
Publikováno v:
Computers & Fluids. 156:58-65
A general methodology, which consists in deriving two-dimensional finite-difference schemes which involve numerical fluxes based on Dirichlet-to-Neumann maps (or Steklov–Poincare operators), is first recalled. Then, it is applied to several types o
Autor:
Laurent Gosse
Publikováno v:
Acta applicandae mathematicae (2018). doi:10.1007/s10440-017-0122-5
info:cnr-pdr/source/autori:Laurent Gosse/titolo:L-Splines and Viscosity Limits forWell-Balanced Schemes Acting on Linear Parabolic Equations/doi:10.1007%2Fs10440-017-0122-5/rivista:Acta applicandae mathematicae/anno:2018/pagina_da:/pagina_a:/intervallo_pagine:/volume
info:cnr-pdr/source/autori:Laurent Gosse/titolo:L-Splines and Viscosity Limits forWell-Balanced Schemes Acting on Linear Parabolic Equations/doi:10.1007%2Fs10440-017-0122-5/rivista:Acta applicandae mathematicae/anno:2018/pagina_da:/pagina_a:/intervallo_pagine:/volume
Well-balanced schemes, nowadays mostly developed for both hyperbolic and kinetic equations, are extended in order to handle linear parabolic equations, too. By considering the variational solution of the resulting stationary boundary-value problem, a
Autor:
Laurent Gosse, Nicolas Vauchelet
Publikováno v:
Numerische Mathematik 141 (2019): 627–680. doi:10.1007/s00211-018-01020-8
info:cnr-pdr/source/autori:Laurent Gosse; Nicolas Vauchelet/titolo:Some examples of kinetic schemes whose diffusion limit is Il'in's exponential-fitting/doi:10.1007%2Fs00211-018-01020-8/rivista:Numerische Mathematik/anno:2019/pagina_da:627/pagina_a:680/intervallo_pagine:627–680/volume:141
info:cnr-pdr/source/autori:Laurent Gosse; Nicolas Vauchelet/titolo:Some examples of kinetic schemes whose diffusion limit is Il'in's exponential-fitting/doi:10.1007%2Fs00211-018-01020-8/rivista:Numerische Mathematik/anno:2019/pagina_da:627/pagina_a:680/intervallo_pagine:627–680/volume:141
This paper is concerned with diffusive approximations of some numerical schemes for several linear (or weakly nonlinear) kinetic models which are motivated by wide-range applications, including radiative transfer or neutron transport, run-and-tumble
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3d42389954fd14efb1299c62bc5538c
https://link.springer.com/article/10.1007/s00211-018-01020-8
https://link.springer.com/article/10.1007/s00211-018-01020-8