Zobrazeno 1 - 10
of 115
pro vyhledávání: '"Laurent AMSALEG"'
Publikováno v:
EURASIP Journal on Information Security, Vol 2020, Iss 1, Pp 1-12 (2020)
Abstract This paper investigates the visual quality of the adversarial examples. Recent papers propose to smooth the perturbations to get rid of high frequency artifacts. In this work, smoothing has a different meaning as it perceptually shapes the p
Externí odkaz:
https://doaj.org/article/a57438bb77614f47b5968f003709067f
In some face recognition applications, we are interested to verify whether an individual is a member of a group, without revealing their identity. Some existing methods, propose a mechanism for quantizing precomputed face descriptors into discrete em
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::750d67200ab377ff6c1981e99ea5c5b0
http://arxiv.org/abs/2206.08683
http://arxiv.org/abs/2206.08683
Publikováno v:
ACM Multimedia, Trustworthy AI Workshop
Trustworthy AI 2021-1st International Workshop on Trustworthy AI for Multimedia Computing
Trustworthy AI 2021-1st International Workshop on Trustworthy AI for Multimedia Computing, Oct 2021, Virtual, China. pp.1-10, ⟨10.1145/3475731.3484955⟩
Trustworthy AI @ ACM Multimedia
Trustworthy AI 2021-1st International Workshop on Trustworthy AI for Multimedia Computing
Trustworthy AI 2021-1st International Workshop on Trustworthy AI for Multimedia Computing, Oct 2021, Virtual, China. pp.1-10, ⟨10.1145/3475731.3484955⟩
Trustworthy AI @ ACM Multimedia
International audience; Deep Neural Networks (DNNs) are robust against intra-class variability of images, pose variations and random noise, but vulnerable to imperceptible adversarial perturbations that are well-crafted precisely to mislead. While ra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::233a0cc4eb4ee96b470421820742f8f4
https://hal.archives-ouvertes.fr/hal-03363999
https://hal.archives-ouvertes.fr/hal-03363999
Publikováno v:
Information Visualization
Information Visualization, SAGE Publications, 2021, pp.1-21. ⟨10.1177/14738716211045007⟩
Information Visualization, 2021, pp.1-21. ⟨10.1177/14738716211045007⟩
Information Visualization, SAGE Publications, 2021, pp.1-21. ⟨10.1177/14738716211045007⟩
Information Visualization, 2021, pp.1-21. ⟨10.1177/14738716211045007⟩
International audience; We present the design and evaluation of HyperStorylines, a technique that generalizes Storylines to visualize the evolution of relationships involving multiple types of entities such as, for example, people, locations, and com
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84fe3024c4e005f1e030d28aeb78552e
https://hal.inria.fr/hal-03352276/document
https://hal.inria.fr/hal-03352276/document
L’apprentissage automatique utilisant des réseaux neuronaux profonds appliqués à la reconnaissance d’images fonctionne extrêmement bien. Néanmoins, il est possible de modifier intentionnellement et très légèrement les images, modification
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::aa88c7beb17055033bad2264e63a21c8
https://doi.org/10.51926/iste.9026.ch2
https://doi.org/10.51926/iste.9026.ch2
Autor:
Guillaume Gravier, Hayley Hung, Chong-Wah Ngo, Wei Tsang Ooi, Laurent Amsaleg, Martha Larson, Benoit Huet
Publikováno v:
27th ACM International Conference on Multimedia
Laurent Amsaleg; Benoit Huet; Martha Larson; Guillaume Gravier; Hayley Hung; Chong-Wah Ngo; Wei Tsang Ooi. 27th ACM International Conference on Multimedia, Oct 2019, Nice, France. ACM Press, 2019, ⟨10.1145/3343031⟩
Laurent Amsaleg; Benoit Huet; Martha Larson; Guillaume Gravier; Hayley Hung; Chong-Wah Ngo; Wei Tsang Ooi. 27th ACM International Conference on Multimedia, Oct 2019, Nice, France. ACM Press, 2019, ⟨10.1145/3343031⟩
International audience; We are delighted to welcome you to Nice, France, for ACM Multimedia 2019, the 27th ACM International Conference on Multimedia. ACM Multimedia is the premier international conference in the area of multimedia within the field o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c96f5014810b50ebd2120409dc4dc41
https://inria.hal.science/hal-02378803
https://inria.hal.science/hal-02378803
Publikováno v:
EURASIP Journal on Information Security
EURASIP Journal on Information Security, 2020, 2020 (1), ⟨10.1186/s13635-020-00112-z⟩
EURASIP Journal on Information Security, Vol 2020, Iss 1, Pp 1-12 (2020)
EURASIP Journal on Information Security, Hindawi/SpringerOpen, 2020, 2020 (1), ⟨10.1186/s13635-020-00112-z⟩
EURASIP Journal on Information Security, 2020, 2020 (1), ⟨10.1186/s13635-020-00112-z⟩
EURASIP Journal on Information Security, Vol 2020, Iss 1, Pp 1-12 (2020)
EURASIP Journal on Information Security, Hindawi/SpringerOpen, 2020, 2020 (1), ⟨10.1186/s13635-020-00112-z⟩
This paper investigates the visual quality of the adversarial examples. Recent papers propose to smooth the perturbations to get rid of high frequency artifacts. In this work, smoothing has a different meaning as it perceptually shapes the perturbati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db3db366ccfd3623c452ea23a4bccfac
https://hal.science/hal-03017171/document
https://hal.science/hal-03017171/document
Publikováno v:
ICASSP
ICASSP 2020-45th International Conference on Acoustics, Speech, and Signal Processing
ICASSP 2020-45th International Conference on Acoustics, Speech, and Signal Processing, May 2020, Barcelona, Spain
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, Barcelona, Spain
ICASSP 2020-45th International Conference on Acoustics, Speech, and Signal Processing
ICASSP 2020-45th International Conference on Acoustics, Speech, and Signal Processing, May 2020, Barcelona, Spain
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, Barcelona, Spain
International audience; This paper proposes a framework for group membership protocols preventing the curious but honest server from reconstructing the enrolled biometric signatures and inferring the identity of querying clients. This framework learn
Publikováno v:
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security, 2020, 16, pp.701-713. ⟨10.1109/TIFS.2020.3021899⟩
IEEE Transactions on Information Forensics and Security, Institute of Electrical and Electronics Engineers, 2020, 16, pp.701-713. ⟨10.1109/TIFS.2020.3021899⟩
IEEE Transactions on Information Forensics and Security, 2020, 16, pp.701-713. ⟨10.1109/TIFS.2020.3021899⟩
IEEE Transactions on Information Forensics and Security, Institute of Electrical and Electronics Engineers, 2020, 16, pp.701-713. ⟨10.1109/TIFS.2020.3021899⟩
Adversarial examples of deep neural networks are receiving ever increasing attention because they help in understanding and reducing the sensitivity to their input. This is natural given the increasing applications of deep neural networks in our ever
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2140c7dd7db29f43393c93aba9239393
https://hal.inria.fr/hal-02404216
https://hal.inria.fr/hal-02404216
Publikováno v:
WIFS 2019-IEEE International Workshop on Information Forensics and Security
WIFS 2019-IEEE International Workshop on Information Forensics and Security, Dec 2019, Delft, Netherlands. pp.1-6
WIFS
2019 IEEE International Workshop on Information Forensics and Security (WIFS)
2019 IEEE International Workshop on Information Forensics and Security (WIFS), Dec 2019, Delft, Netherlands
WIFS 2019-IEEE International Workshop on Information Forensics and Security, Dec 2019, Delft, Netherlands. pp.1-6
WIFS
2019 IEEE International Workshop on Information Forensics and Security (WIFS)
2019 IEEE International Workshop on Information Forensics and Security (WIFS), Dec 2019, Delft, Netherlands
International audience; Group membership verification checks if a biometric trait corresponds to one member of a group without revealing the identity of that member. Recent contributions provide privacy for group membership protocols through the join
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d5ac2d0bdd08c27bc6b12c043824c81
https://hal.archives-ouvertes.fr/hal-02307926/document
https://hal.archives-ouvertes.fr/hal-02307926/document