Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Laurens Vanderstraeten"'
Autor:
Wei-Lin Tu, Laurens Vanderstraeten, Norbert Schuch, Hyun-Yong Lee, Naoki Kawashima, Ji-Yao Chen
Publikováno v:
PRX Quantum, Vol 5, Iss 1, p 010335 (2024)
Diagrammatic summation is a common bottleneck in modern applications of projected entangled-pair states, especially in computing low-energy excitations of a two-dimensional quantum many-body system. To solve this problem, here we extend the generatin
Externí odkaz:
https://doaj.org/article/29fa539b74534fd3982c2c5ffef3c26c
Publikováno v:
Journal of High Energy Physics, Vol 2022, Iss 6, Pp 1-29 (2022)
Abstract We study the phase diagram of the (1 + 1)-dimensional Gross-Neveu model with both g x 2 ψ ¯ ψ 2 $$ {g}_x^2{\left(\overline{\psi}\psi \right)}^2 $$ and g y 2 ψ ¯ i γ 5 ψ 2 $$ {g}_y^2{\left(\overline{\psi}i{\gamma}_5\psi \right)}^2 $$ i
Externí odkaz:
https://doaj.org/article/4fc0b199e1c74742be91c9edd7b8c6a2
Autor:
Gertian Roose, Nick Bultinck, Laurens Vanderstraeten, Frank Verstraete, Karel Van Acoleyen, Jutho Haegeman
Publikováno v:
Journal of High Energy Physics, Vol 2021, Iss 7, Pp 1-34 (2021)
Abstract We construct a Hamiltonian lattice regularisation of the N-flavour Gross-Neveu model that manifestly respects the full O(2N) symmetry, preventing the appearance of any unwanted marginal perturbations to the quantum field theory. In the conte
Externí odkaz:
https://doaj.org/article/58eb522b02454f278046ee8921012dd2
Publikováno v:
Physical Review Research, Vol 3, Iss 1, p 013041 (2021)
Motivated by the recent success of tensor networks to calculate the residual entropy of spin ice and kagome Ising models, we develop a general framework to study frustrated Ising models in terms of infinite tensor networks that can be contracted usin
Externí odkaz:
https://doaj.org/article/d0bf197afb644a15b081380d77252175
Autor:
Maarten Van Damme, Laurens Vanderstraeten, Jacopo De Nardis, Jutho Haegeman, Frank Verstraete
Publikováno v:
Physical Review Research, Vol 3, Iss 1, p 013078 (2021)
We develop a method based on tensor networks to create localized single-particle excitations on top of strongly correlated quantum spin chains. In analogy to the problem of creating localized Wannier modes, this is achieved by optimizing the gauge fr
Externí odkaz:
https://doaj.org/article/5265901de9fd48b2bed069d93f67ff49
Publikováno v:
Physical Review Research, Vol 2, Iss 3, p 033111 (2020)
Considering nonintegrable quantum Ising chains with exponentially decaying interactions, we present matrix product state results that establish a connection between low-energy quasiparticle excitations and the kind of nonanalyticities in the Loschmid
Externí odkaz:
https://doaj.org/article/1a5edd8ce11c45aab5b8f9bd466f2d21
Publikováno v:
Physical Review E. 107
Publikováno v:
Physical Review Letters, 129(20):200601. American Physical Society
We introduce a new paradigm for scaling simulations with projected entangled-pair states (PEPS) for critical strongly-correlated systems, allowing for reliable extrapolations of PEPS data with relatively small bond dimensions $D$. The key ingredient
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e697db3d01761c9cbdbdf347d67b2875
https://dare.uva.nl/personal/pure/en/publications/scaling-hypothesis-for-projected-entangledpair-states(f1a223cd-84f4-4d9e-84cd-6ee440d5a2ca).html
https://dare.uva.nl/personal/pure/en/publications/scaling-hypothesis-for-projected-entangledpair-states(f1a223cd-84f4-4d9e-84cd-6ee440d5a2ca).html
Autor:
Jeanne Colbois, Bram Vanhecke, Laurens Vanderstraeten, Andrew Smerald, Frank Verstraete, Frédéric Mila
Publikováno v:
Physical Review B. 106
Publikováno v:
PHYSICAL REVIEW B
We introduce a method based on matrix product states (MPS) for computing spectral functions of (quasi-) one-dimensional spin chains, working directly in momentum space in the thermodynamic limit. We simulate the time evolution after applying a moment
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::85442d9713e62d265cd3aa618f48d6fc
http://arxiv.org/abs/2201.07314
http://arxiv.org/abs/2201.07314