Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Laureano Moro Velázquez"'
Autor:
Anna Favaro, Ankur Butala, Thomas Thebaud, Jesús Villalba, Najim Dehak, Laureano Moro-Velázquez
Publikováno v:
npj Parkinson's Disease, Vol 10, Iss 1, Pp 1-17 (2024)
Abstract Numerous studies proposed methods to detect Parkinson’s disease (PD) via speech analysis. However, existing corpora often lack prodromal recordings, have small sample sizes, and lack longitudinal data. Speech samples from celebrities who p
Externí odkaz:
https://doaj.org/article/82158bc3c8b54f4faf524c79e3106109
Autor:
Anna Favaro, Laureano Moro-Velázquez, Ankur Butala, Chelsie Motley, Tianyu Cao, Robert David Stevens, Jesús Villalba, Najim Dehak
Publikováno v:
Frontiers in Neurology, Vol 14 (2023)
Motor impairments are only one aspect of Parkinson's disease (PD), which also include cognitive and linguistic impairments. Speech-derived interpretable biomarkers may help clinicians diagnose PD at earlier stages and monitor the disorder's evolution
Externí odkaz:
https://doaj.org/article/9be99e98c7b948729a6cd8c1169e215f
Autor:
Jorge Andrés Gómez-García, Laureano Moro-Velázquez, Juan Ignacio Godino-Llorente, César Germán Castellanos-Domínguez
Publikováno v:
Revista Facultad de Ingeniería Universidad de Antioquia, Iss 79, Pp 50-62 (2016)
Una categorización automática de los hablantes de acuerdo con su sexo mejora el rendimiento de un detector automático de patologías de voz. Esto se fundamenta en hallazgos que demuestran diferencias perceptuales, acústicas y anatómicas en voces
Externí odkaz:
https://doaj.org/article/6cafb07f45e64555874afb005b6a70db
Autor:
Piotr Żelasko, Siyuan Feng, Laureano Moro Velázquez, Ali Abavisani, Saurabhchand Bhati, Odette Scharenborg, Mark Hasegawa-Johnson, Najim Dehak
The high cost of data acquisition makes Automatic Speech Recognition (ASR) model training problematic for most existing languages, including languages that do not even have a written script, or for which the phone inventories remain unknown. Past wor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4da3ffbb4e52177d36662d6fc394f9c9
Speech systems developed for a particular choice of acoustic domain and sampling frequency do not translate easily to others. The usual practice is to learn domain adaptation and bandwidth extension models independently. Contrary to this, we propose
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f931cbf0cc52c4fde85ef6dd1e537e30
Autor:
Jesús Villalba, Raghavendra Pappagari, Najim Dehak, Piotr Żelasko, Laureano Moro-Velázquez, Jaejin Cho, Sonal Joshi
Publikováno v:
Interspeech 2021.
Publikováno v:
Interspeech 2021.
Autor:
Bence Mark Halpern, Marc Illa, Laureano Moro-Velázquez, Odette Scharenborg, Rob J.J.H. van Son
Publikováno v:
Proceedings of the 11th ISCA Speech Synthesis Workshop (SSW 11)
11th ISCA Speech Synthesis Workshop (SSW 11)
11th ISCA Speech Synthesis Workshop (SSW 11)
In this paper, we propose a new approach to pathological speech synthesis. Instead of using healthy speech as a source, we customise an existing pathological speech sample to a new speaker's voice characteristics. This approach alleviates the evaluat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b1b64f42c2be1f4fa505f73383dc8d4
https://zenodo.org/record/7149126
https://zenodo.org/record/7149126
Publikováno v:
Biomedical Signal Processing and Control, ISSN 1746-8094, 2019-05, Vol. 51
Archivo Digital UPM
Universidad Politécnica de Madrid
Archivo Digital UPM
Universidad Politécnica de Madrid
This is the first of a two-part series devoted to review the current state of the art of automatic voice condition analysis systems. The goal of this paper is to provide to the scientific community and to newly comers to the field of automatic voice
Publikováno v:
ICASSP
Data augmentation is a widely used strategy for training robust machine learning models. It partially alleviates the problem of limited data for tasks like speech emotion recognition (SER), where collecting data is expensive and challenging. This stu