Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Laura N Blaivas"'
Publikováno v:
Journal of the American College of Emergency Physicians Open, Vol 1, Iss 5, Pp 857-864 (2020)
Abstract Objectives We sought to create a deep learning algorithm to determine the degree of inferior vena cava (IVC) collapsibility in critically ill patients to enable novice point‐of‐care ultrasound (POCUS) providers. Methods We used publicly
Externí odkaz:
https://doaj.org/article/6339f567fe2044d1957bdcee4206a2d7
Autor:
Sonia Shah, Yiju Teresa Liu, Joseph L. Thomas, Kabir Yadav, Kendra Campbell, Michael Blaivas, Laura N Blaivas
Publikováno v:
Journal of Ultrasound in Medicine. 41:2059-2069
OBJECTIVES A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical
Publikováno v:
Journal of Ultrasound in Medicine. 41:855-863
Objectives To test deep learning (DL) algorithm performance repercussions by introducing novel ultrasound equipment into a clinical setting. Methods Researchers introduced prospectively obtained inferior vena cava (IVC) videos from a similar patient
Publikováno v:
Journal of Ultrasound in Medicine. 41:2109-2111
Autor:
Laura N Blaivas, Michael Blaivas
Publikováno v:
Journal of Ultrasound in Medicine. 40:377-383
Objectives Deep learning for medical imaging analysis uses convolutional neural networks pretrained on ImageNet (Stanford Vision Lab, Stanford, CA). Little is known about how such color- and scene-rich standard training images compare quantitatively
Publikováno v:
Signa Vitae.
Objectives: To create a deep learning (DL) algorithm capable of analyzing real time ultrasound video of the inferior vena cava (IVC) for complete collapse in pediatric patients being evaluated for intravenous fluid (IVF) resuscitation. Methods: Resea
Autor:
Gary Philips, Michael Blaivas, Mitchell M. Levy, Carsten Eickhoff, Adeel Abbasi, Roland C. Merchant, Keith Corl, Laura N Blaivas, Nathan I. Shapiro
Publikováno v:
Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in MedicineReferences. 40(8)
Objectives To create a deep learning algorithm capable of video classification, using a long short-term memory (LSTM) network, to analyze collapsibility of the inferior vena cava (IVC) to predict fluid responsiveness in critically ill patients. Metho
Publikováno v:
Journal of the American College of Emergency Physicians Open
Journal of the American College of Emergency Physicians Open, Vol 1, Iss 5, Pp 857-864 (2020)
Journal of the American College of Emergency Physicians Open, Vol 1, Iss 5, Pp 857-864 (2020)
Objectives We sought to create a deep learning algorithm to determine the degree of inferior vena cava (IVC) collapsibility in critically ill patients to enable novice point‐of‐care ultrasound (POCUS) providers. Methods We used publicly available
Autor:
Michael Blaivas, Laura N Blaivas
Publikováno v:
Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in MedicineReferences. 39(6)
OBJECTIVES Little is known about optimal deep learning (DL) approaches for point-of-care ultrasound (POCUS) applications. We compared 6 popular DL architectures for POCUS cardiac image classification to determine whether an optimal DL architecture ex
Publikováno v:
Signa Vitae. Sep2021, Vol. 17 Issue 5, p34-41. 8p.