Zobrazeno 1 - 10
of 283
pro vyhledávání: '"Laura DeMarco"'
Publikováno v:
Oberwolfach Reports. 19:1091-1164
Autor:
Laura DeMarco, Niki Myrto Mavraki
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal).
Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K. For each point a ∈ ℙ 1 ( k ) {a\in\
Publikováno v:
Annals of Mathematics. 191
We introduce a general strategy for proving quantitative and uniform bounds on the number of common points of height zero for a pair of inequivalent height functions on $\mathbb{P}^1(\overline{\mathbb{Q}}).$ We apply this strategy to prove a conjectu
Autor:
Yûsuke Okuyama, Laura DeMarco
Publikováno v:
Conformal Geometry and Dynamics of the American Mathematical Society. 22:33-44
We look at degenerating meromorphic families of rational maps on $\mathbb{P}^1$ -- holomorphically parameterized by a punctured disk -- and we provide examples where the bifurcation current fails to have a bounded potential in a neighborhood of the p
Publikováno v:
International Mathematics Research Notices. 2019:2453-2482
Let a and b be algebraic numbers such that exactly one of a and b is an algebraic integer, and let f_t(z):=z^2+t be a family of polynomials parametrized by t. We prove that the set of all algebraic numbers t for which there exist positive integers m
Autor:
Kevin M. Pilgrim, Laura DeMarco
Publikováno v:
Annales scientifiques de l'École normale supérieure. 50:799-877
We consider the problem of classifying the dynamics of complex polynomials f : C ! C restricted to the basins of innity X(f). We synthesize existing combinatorial tools | tableaux, trees, and laminations | into a new invariant of basin dynamics we ca
Autor:
Laura DeMarco
Publikováno v:
Proceedings of the International Congress of Mathematicians (ICM 2018).
Publikováno v:
American Journal of Mathematics. 138:697-732
We give a dynamical proof of a result of Masser and Zannier [MZ2, MZ3] about torsion points on the Legendre family of elliptic curves. Our methods also treat points of small height. A key ingredient is the arithmetic equidistribution theorem on $\mat
Autor:
Laura DeMarco, Xander Faber
Publikováno v:
Mathematische Annalen. 365:1669-1699
We study pairs $(f, \Gamma)$ consisting of a non-Archimedean rational function $f$ and a finite set of vertices $\Gamma$ in the Berkovich projective line, under a certain stability hypothesis. We prove that stability can always be attained by enlargi
Publikováno v:
Proceedings of the London Mathematical Society. 111:149-180
We study critical orbits and bifurcations within the moduli space of quadratic rational maps on $\mathbb{P}^1$. We focus on the family of curves, $Per_1(\lambda)$ for $\lambda$ in $\mathbb{C}$, defined by the condition that each $f\in Per_1(\lambda)$