Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Laura DeLoss"'
Autor:
Laura DeLoss
The minimum skew rank of a finite, simple, undirected graph G over a field F of characteristic not equal to 2 is defined to be the minimum possible rank of all skew-symmetric matrices over F whose i, j-entry is nonzero if and only if there exists an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d6f2d79cdad2d3a07919d0dcf8eb3601
https://doi.org/10.31274/etd-180810-2409
https://doi.org/10.31274/etd-180810-2409
Autor:
Kaitlyn Murphy, Leslie Hogben, Travis Peters, Edgard Almodovar, Camila A. Ramírez, Laura DeLoss, Kirsten Hogenson
Publikováno v:
Involve 3, no. 4 (2010), 371-392
The minimum rank of a simple graph [math] is defined to be the smallest possible rank over all symmetric real matrices whose [math] -th entry (for [math] ) is nonzero whenever [math] is an edge in [math] and is zero otherwise. Maximum nullity is take
Publikováno v:
Linear Algebra and its Applications. 432:2995-3001
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ij th entry (for i ≠ j ) is nonzero whenever { i , j } is an edge in G and is zero otherwise. Minimum rank is a difficult parame
Autor:
Hana Kim, Bokhee Im, Olga Pryporova, Jason Grout, Mary Allison, Kendrick Savage, Elizabeth Bodine, Joyati Debnath, Colin Garnett, Reshmi Nair, Bryan L. Shader, Leslie Hogben, Luz Maria DeAlba, Laura DeLoss, Amy Wangsness Wehe
Publikováno v:
Linear Algebra and its Applications. (10):2457-2472
The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. The problem of determining