Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Lauer, Colin"'
Dissertation/ Thesis
Autor:
Lauer, Colin
Hadron structure is an important field in particle physics because hadrons make up most of the matter in nature. The theory of the strong nuclear force, via which the partons of hadrons interact, is Quantum Chromodynamics (QCD) and cannot be solved a
Externí odkaz:
http://hdl.handle.net/20.500.12613/6547
Autor:
Alexandrou, Constantia, Bacchio, Simone, Cloët, Ian, Constantinou, Martha, Delmar, Joseph, Hadjiyiannakou, Kyriakos, Koutsou, Giannis, Lauer, Colin, Avilés-Casco, Alejandro Vaquero
We present a calculation of the scalar, vector and tensor pion and kaon form factors using one ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improvement. The quark masses ar
Externí odkaz:
http://arxiv.org/abs/2112.03953
Autor:
Alexandrou, Constantia, Bacchio, Simone, Cloët, Ian, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Koutsou, Giannis, Lauer, Colin
We present a calculation of the connected-diagram contributions to the first three non-trivial Mellin moments for the pion and kaon, extracted using local operators with up to 3 covariant derivatives. We use one ensemble of gauge configurations with
Externí odkaz:
http://arxiv.org/abs/2112.03952
Autor:
Alexandrou, Constantia, Bacchio, Simone, Cloet, Ian, Constantinou, Martha, Delmar, Joseph, Hadjiyiannakou, Kyriakos, Koutsou, Giannis, Lauer, Colin, Vaquero, Alejandro
We present a calculation of the scalar, vector, and tensor form factors for the pion and kaon in lattice QCD. We use an ensemble of two degenerate light, a strange and a charm quark ($N_f=2+1+1$) of maximally twisted mass fermions with clover improve
Externí odkaz:
http://arxiv.org/abs/2111.08135
Autor:
Alexandrou, Constantia, Bacchio, Simone, Cloët, Ian, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Koutsou, Giannis, Lauer, Colin
Publikováno v:
Phys. Rev. D 104, 054504 (2021)
We present a calculation of the pion and kaon Mellin moment $\langle x^3 \rangle$ extracted directly in lattice QCD using a three-derivative local operator. We use one ensemble of gauge configurations with two degenerate light, a strange and a charm
Externí odkaz:
http://arxiv.org/abs/2104.02247
Autor:
Alexandrou, Constantia, Bacchio, Simone, Cloet, Ian, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Koutsou, Giannis, Lauer, Colin
Publikováno v:
Phys. Rev. D 103, 014508 (2021)
We present a calculation of the pion quark momentum fraction, $\langle x \rangle$, and its third Mellin moment $\langle x^2 \rangle$. We also obtain directly, for the first time, $\langle x \rangle$ and $\langle x^2 \rangle$ for the kaon using local
Externí odkaz:
http://arxiv.org/abs/2010.03495
Autor:
Alexandrou, Constantia, Bacchio, Simone, Constantinou, Martha, Howarth, Dean, Lauer, Colin, Hadjiyiannakou, Kyriakos, Koutsou, Giannis, Jansen, Karl
In this work we present preliminary results on the nucleon axial and tensor charges, the quark momentum fraction and the first moment of the helicity distribution. The simulations have been performed using two $N_f{=}2$ and $N_f{=}2{+}1{+}1$ ensemble
Externí odkaz:
http://arxiv.org/abs/1904.10013
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexandrou, Constantia, Bacchio, Simone, Cloët, Ian, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Koutsou, Giannis, Lauer, Colin
Publikováno v:
Physical Review
We present a calculation of the pion and kaon Mellin moment ⟨x3⟩ extracted directly in lattice QCD using a three-derivative local operator. We use one ensemble of gauge configurations with two degenerate light, a strange and a charm quark (Nf=2+1
Autor:
Alexandrou, Constantia, Bacchio, Simone, Cloët, Ian, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Koutsou, Giannis, Lauer, Colin
Publikováno v:
Physical Review
We present a calculation of the pion quark momentum fraction, ⟨x⟩, and its third Mellin moment ⟨x2⟩. We also obtain directly, for the first time, ⟨x⟩ and ⟨x2⟩ for the kaon using local operators. We use an ensemble of two degenerate li