Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Laue, Reinhard"'
In this article, we show the existence of large sets $\operatorname{LS}_2[3](2,k,v)$ for infinitely many values of $k$ and $v$. The exact condition is $v \geq 8$ and $0 \leq k \leq v$ such that for the remainders $\bar{v}$ and $\bar{k}$ of $v$ and $k
Externí odkaz:
http://arxiv.org/abs/1603.06976
In this article, three types of joins are introduced for subspaces of a vector space. Decompositions of the Gra{\ss}mannian into joins are discussed. This framework admits a generalization of large set recursion methods for block designs to subspace
Externí odkaz:
http://arxiv.org/abs/1411.7181
Autor:
Kiermaier, Michael, Laue, Reinhard
Publikováno v:
Advances in Mathematics of Communication 9 (2015), 105-115
A generalization of forming derived and residual designs from $t$-designs to subspace designs is proposed. A $q$-analog of a theorem by Van Trung, van Leijenhorst and Driessen is proven, stating that if for some (not necessarily realizable) parameter
Externí odkaz:
http://arxiv.org/abs/1405.5432
Autor:
Kurz, Sascha, Laue, Reinhard
Publikováno v:
The Australasian Journal of Combinatorics, Vol. 39, Pages 233-240, 2007
Geometrical objects with integral sides have attracted mathematicians for ages. For example, the problem to prove or to disprove the existence of a perfect box, that is, a rectangular parallelepiped with all edges, face diagonals and space diagonals
Externí odkaz:
http://arxiv.org/abs/0804.1296
Publikováno v:
In Journal of Combinatorial Theory, Series A April 2017 147:155-185
Publikováno v:
In Journal of Combinatorial Theory, Series A 2011 118(3):1072-1085
Autor:
Laue, Reinhard, Wassermann, Alfred
Publikováno v:
In Discrete Mathematics 2008 308(2):166-174
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.