Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Latorre, Adela"'
Publikováno v:
Linear Algebra and its Applications, 2023
We present two constructions of complex symplectic structures on Lie algebras with large abelian ideals. In particular, we completely classify complex symplectic structures on almost abelian Lie algebras. By considering compact quotients of their cor
Externí odkaz:
http://arxiv.org/abs/2211.08258
On a complex manifold $(M,J)$, we interpret complex symplectic and pseudo-K\"ahler structures as symplectic forms with respect to which $J$ is, respectively, symmetric and skew-symmetric. We classify complex symplectic structures on 4-dimensional Lie
Externí odkaz:
http://arxiv.org/abs/2101.11953
We classify the nilpotent Lie algebras of real dimension eight and minimal center that admit a complex structure. Furthermore, for every such nilpotent Lie algebra $\mathfrak{g}$, we describe the space of complex structures on $\mathfrak{g}$ up to is
Externí odkaz:
http://arxiv.org/abs/2011.09916
Autor:
Latorre, Adela, Ugarte, Luis
We study the stability of compact pseudo-K\"ahler manifolds, i.e. compact complex manifolds $X$ endowed with a symplectic form compatible with the complex structure of $X$. When the corresponding metric is positive-definite, $X$ is K\"ahler and any s
Externí odkaz:
http://arxiv.org/abs/2001.04821
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Linear Algebra and Its Applications 15 November 2023 677:254-305
We prove that for any $n\geq 4$ there are infinitely many real homotopy types of $2n$-dimensional nilmanifolds admitting generalized complex structures of every type $k$, for $0 \leq k \leq n$. This is in deep contrast to the $6$-dimensional case.
Externí odkaz:
http://arxiv.org/abs/1905.11111
Publikováno v:
In Journal of Algebra 15 January 2023 614:271-306
We investigate Lie algebras endowed with a complex symplectic structure and develop a method, called \emph{complex symplectic oxidation}, to construct certain complex symplectic Lie algebras of dimension $4n+4$ from those of dimension $4n$. We specia
Externí odkaz:
http://arxiv.org/abs/1811.05969
We find a one-parameter family of non-isomorphic nilpotent Lie algebras $\mathfrak{g}_a$, with $a \in [0,\infty)$, of real dimension eight with (strongly non-nilpotent) complex structures. By restricting $a$ to take rational values, we arrive at the
Externí odkaz:
http://arxiv.org/abs/1712.07820