Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Last, Yoram"'
We show that some spectral properties of the almost Mathieu operator with frequency well approximated by rationals can be as poor as at all possible in the class of all one-dimensional discrete Schroedinger operators. For the class of critical coupli
Externí odkaz:
http://arxiv.org/abs/2110.07974
Autor:
Last, Yoram, Lukic, Milivoje
We disprove a conjecture of Breuer-Last-Simon concerning the absolutely continuous spectrum of Jacobi matrices with coefficients that obey an $\ell^2$ bounded variation condition with step $q$. We prove existence of a.c. spectrum on a smaller set tha
Externí odkaz:
http://arxiv.org/abs/1702.05245
We characterize the absolutely continuous spectrum of half-line one-dimensional Schr\"odinger operators in terms of the limiting behavior of the Crystaline Landauer-B\"uttiker conductance of the associated finite samples.
Externí odkaz:
http://arxiv.org/abs/1512.00099
Autor:
Last, Yoram, Shamis, Mira
We study the almost Mathieu operator at critical coupling. We prove that there exists a dense $G_\delta$ set of frequencies for which the spectrum is of zero Hausdorff dimension.
Comment: v1: 24 pp. v2: 25 pp, corrected the statement of Theorem
Comment: v1: 24 pp. v2: 25 pp, corrected the statement of Theorem
Externí odkaz:
http://arxiv.org/abs/1510.07651
We characterize the absolutely continuous spectrum of the one-dimensional Schr\"odinger operators $h=-\Delta+v$ acting on $\ell^2(\mathbb{Z}_+)$ in terms of the limiting behavior of the Landauer-B\"uttiker and Thouless conductances of the associated
Externí odkaz:
http://arxiv.org/abs/1504.07285
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In the independent electron approximation, the average (energy/charge/entropy) current flowing through a finite sample S connected to two electronic reservoirs can be computed by scattering theoretic arguments which lead to the famous Landauer-B\"utt
Externí odkaz:
http://arxiv.org/abs/1408.0185
We study the stability of convergence of the Christoffel-Darboux kernel, associated with a compactly supported measure, to the sine kernel, under perturbations of the Jacobi coefficients of the measure. We prove stability under variations of the boun
Externí odkaz:
http://arxiv.org/abs/1302.7237
Publikováno v:
Duke Math. J. 157, no. 3 (2011), 425-460
We prove dynamical upper bounds for discrete one-dimensional Schroedinger operators in terms of various spacing properties of the eigenvalues of finite volume approximations. We demonstrate the applicability of our approach by a study of the Fibonacc
Externí odkaz:
http://arxiv.org/abs/0911.1671
By combining some ideas of Lubinsky with some soft analysis, we prove that universality and clock behavior of zeros for OPRL in the a.c. spectral region is implied by convergence of $\frac{1}{n} K_n(x,x)$ for the diagonal CD kernel and boundedness of
Externí odkaz:
http://arxiv.org/abs/0810.3277