Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Lassina Dembélé"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 4 (2016)
A generalization of Serre’s Conjecture asserts that if $F$ is a totally real field, then certain characteristic $p$ representations of Galois groups over $F$ arise from Hilbert modular forms. Moreover, it predicts the set of weights of such form
Externí odkaz:
https://doaj.org/article/26111bad23714aef8cf9f3d91e3d2de9
Publikováno v:
Experimental Mathematics, 31, 1278-1290
Experimental Mathematics
Experimental Mathematics, 31, 4, pp. 1278-1290
Exper.Math.
Exper.Math., 2020, ⟨10.1080/10586458.2020.1737990⟩
Experimental Mathematics
Experimental Mathematics, 31, 4, pp. 1278-1290
Exper.Math.
Exper.Math., 2020, ⟨10.1080/10586458.2020.1737990⟩
We recognize certain special hypergeometric motives, related to and inspired by the discoveries of Ramanujan more than a century ago, as arising from Asai $L$-functions of Hilbert modular forms.
Comment: 18 pages
Comment: 18 pages
Publikováno v:
Arithmetic Geometry, Number Theory, and Computation ISBN: 9783030809133
We study the rational Bianchi newforms (weight 2, trivial character, with rational Hecke eigenvalues) in the LMFDB that are not associated to elliptic curves, but instead to abelian surfaces with quaternionic multiplication. Two of these examples exh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71861d369f89049ceadc9182a84c3955
https://doi.org/10.1007/978-3-030-80914-0_11
https://doi.org/10.1007/978-3-030-80914-0_11
Autor:
Lassina Dembélé
Publikováno v:
Algebra Number Theory 14, no. 10 (2020), 2713-2742
Algebra & Number Theory
Algebra & Number Theory
Let $F$ be the maximal totally real subfield of $\mathbf{Q}(\zeta_{32})$, the cyclotomic field of $32$nd roots of unity. Let $D$ be the quaternion algebra over $F$ ramified exactly at the unique prime above $2$ and 7 of the real places of $F$. Let $\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d362de3a01f6b2bda8cba521a1bd78fc
https://projecteuclid.org/euclid.ant/1608606225
https://projecteuclid.org/euclid.ant/1608606225
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Mathematische Zeitschrift
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Mathematische Zeitschrift
The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are "paritious" -- all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8dd5103778b049209ed13cf0e005a02
http://wrap.warwick.ac.uk/111788/7/WRAP-non-partitous-hilbert-modular-forms-Loeffler-2018.pdf
http://wrap.warwick.ac.uk/111788/7/WRAP-non-partitous-hilbert-modular-forms-Loeffler-2018.pdf
Autor:
Lassina Dembélé
Publikováno v:
Mathematics of Computation. 83:1931-1950
In this paper, we describe an algorithm for computing algebraic modular forms on compact inner forms of G S p 4 \mathrm {GSp}_4 over totally real number fields. By analogues of the Jacquet-Langlands correspondence for G L 2 \mathrm {GL}_2 , this algo
Autor:
Abhinav Kumar, Lassina Dembélé
Publikováno v:
Mathematische Annalen
Springer Berlin Heidelberg
Springer Berlin Heidelberg
We describe several explicit examples of simple abelian surfaces over real quadratic fields with real multiplication and everywhere good reduction. These examples provide evidence for the Eichler–Shimura conjecture for Hilbert modular forms over a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b4d5fbb44a137682078aae6b48adb49
https://hdl.handle.net/21.11116/0000-0004-0D9A-121.11116/0000-0004-0D9C-F21.11116/0000-0004-0D9D-E
https://hdl.handle.net/21.11116/0000-0004-0D9A-121.11116/0000-0004-0D9C-F21.11116/0000-0004-0D9D-E
Autor:
Lassina Dembélé
Publikováno v:
Comptes Rendus Mathematique. 347:111-116
In this Note, we show the existence of a non-solvable Galois extension of Q which is unramified outside 2. The extension K we construct has degree 2 251 731 094 732 800 = 2 19 ( 3 ⋅ 5 ⋅ 17 ⋅ 257 ) 2 , it has root discriminant δ K 2 47 8 = 58.6
Autor:
Clifton Cunningham, Lassina Dembélé
Publikováno v:
Experimental Mathematics. 18:337-345
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert–Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field . In those examples, we identify
Autor:
Lassina Dembélé
Publikováno v:
Experiment. Math. 17, iss. 4 (2008), 427-438
Let $F$ be a real quadratic field with narrow class number one, and $f$ a Hilbert newform of weight $2$ and level $\mathfrak{n}$ with rational Fourier coefficients, where $\mathfrak{n}$ is an integral ideal of $F$. By the Eichler--Shimura constructio