Zobrazeno 1 - 10
of 485
pro vyhledávání: '"Lasiecka, Irena"'
Publikováno v:
Discrete & Continuous Dynamical Systems - B, 25, 10, 4071, 4117, 2020-6-15, 1531-3492_2020_10_4071
We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, with homogeneous boundary conditions, and subject to external sources, assumed to cause instability. The initial conditions for both fluid and heat equat
Externí odkaz:
http://arxiv.org/abs/2202.03435
Publikováno v:
Journal of Inverse and Ill-posed Problems, vol. 30, no. 1, 2022, pp. 35-79
We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair $\{ v, \boldsymbol{u} \}$ of controls localized on $\{ \widetilde{\Gamma}, \omega \}$. Here, $v$ is a scalar Dirichlet boundary con
Externí odkaz:
http://arxiv.org/abs/2202.03262
Publikováno v:
Journal of Differential Equations, Volume 294, 2021, Pages 60-87
In this paper we present an abstract maximal $L^p$-regularity result up to $T = \infty$, that is tuned to capture (linear) Partial Differential Equations of parabolic type, defined on a bounded domain and subject to finite dimensional, stabilizing, f
Externí odkaz:
http://arxiv.org/abs/2202.03249
Publikováno v:
Applied Mathematics & Optimization, 83, 3, 1765-1829 (2021)
We consider 2- or 3-dimensional incompressible Navier-Stokes equations defined on a bounded domain $\Omega$, with no-slip boundary conditions and subject to an external force, assumed to cause instability. We then seek to uniformly stabilize such N-S
Externí odkaz:
http://arxiv.org/abs/2202.04190
Autor:
Bongarti, Marcelo, Lasiecka, Irena
Publikováno v:
Discrete and Continuous Dynamical Systems - S, 2022, 15(8): 1957-1985
Boundary feedback stabilization of a critical, nonlinear Jordan--Moore--Gibson--Thompson (JMGT) equation is considered. JMGT arises in modeling of acoustic waves involved in medical/engineering treatments like lithotripsy, thermotherapy, sonochemistr
Externí odkaz:
http://arxiv.org/abs/2112.15472
The elimination of aeroelastic instability (resulting in sustained oscillations of bridges, buildings, airfoils) is a central engineering and design issue. Mathematically, this translates to strong asymptotic stabilization of a 3D flow by a 2D elasti
Externí odkaz:
http://arxiv.org/abs/2112.12208
The Jordan--Moore--Gibson--Thompson (JMGT) equation is a well-established and recently widely studied model for nonlinear acoustics (NLA). It is a third-order (in time) semilinear Partial Differential Equation (PDE) model with the distinctive feature
Externí odkaz:
http://arxiv.org/abs/2107.09978
Autor:
Bongarti, Marcelo, Lasiecka, Irena
The Jordan-Moore-Gibson-Thompson (JMGT)\cite{christov_heat_2005,jordan_nonlinear_2008,straughan_heat_2014} equation is a benchmark model describing propagation of nonlinear acoustic waves in heterogeneous fluids at rest. This is a third-order (in tim
Externí odkaz:
http://arxiv.org/abs/2012.04742
The (third-order in time) JMGT equation \cite{Jordan2,HCP} is a nonlinear (quasi-linear) Partial Differential Equation (PDE) model introduced to describe a nonlinear propagation of sound in an acoustic medium. The important feature is that the model
Externí odkaz:
http://arxiv.org/abs/2011.11141