Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Lascar, Richard"'
Autor:
Lascar, Richard, Moyano, Ivan
In this article we investigate the Gevrey version of the WKB method known in the smooth and analytic categories. We use conjugation by FIO's and sketch a calculus of FIO's in our setting which the semi classic one. We have sub exponential remainders
Externí odkaz:
http://arxiv.org/abs/2310.00979
We study semiclassical Gevrey pseudodifferential operators acting on the Bargmann space of entire functions with quadratic exponential weights. Using some ideas of the time frequency analysis, we show that such operators are uniformly bounded on a na
Externí odkaz:
http://arxiv.org/abs/2009.09128
We study semiclassical Gevrey pseudodifferential operators, acting on exponentially weighted spaces of entire holomorphic functions. The symbols of such operators are Gevrey functions defined on suitable I-Lagrangian submanifolds of the complexified
Externí odkaz:
http://arxiv.org/abs/2009.09125
The concern of this article is a semiclassical Weyl calculus on an infinite dimensional Hilbert space $H$. If $(i, H, B)$ is a Wiener triplet associated to $H$, the quantum state space will be the space of $L^2$ functions on $B$ with respect to a Gau
Externí odkaz:
http://arxiv.org/abs/1610.06379
We consider the wave equation on a manifold $(\Omega,g)$ of dimension $d\geq 2$ with smooth strictly convex boundary $\partial\Omega\neq\emptyset$, with Dirichlet boundary conditions. We construct a sharp local in time parametrix and then proceed to
Externí odkaz:
http://arxiv.org/abs/1605.08800
Autor:
Lascar, Bernard, Lascar, Richard
We prove here the Melin H\"ormander inequality for operators with multiple characteristics.
Comment: in French
Comment: in French
Externí odkaz:
http://arxiv.org/abs/1509.00138
Autor:
Lascar, Bernard, Lascar, Richard
We prove here an energy estimate for the Cauchy problem for hyperbolic equations with double characteristics which contains both effectively hyperbolic and non effectively hyperbolic points.
Comment: in French
Comment: in French
Externí odkaz:
http://arxiv.org/abs/1509.00142
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.