Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Lars Halvard Halle"'
Publikováno v:
Journal of Algebraic Geometry
Gulbrandsen, M G, Halle, L H, Hulek, K & Zhang, Z 2021, ' The geometry of degenerations of Hilbert schemes of points ', Journal of Algebraic Geometry, vol. 30, no. 1, pp. 1-56 . https://doi.org/10.1090/jag/765
Gulbrandsen, M G, Halle, L H, Hulek, K & Zhang, Z 2021, ' The geometry of degenerations of Hilbert schemes of points ', Journal of Algebraic Geometry, vol. 30, no. 1, pp. 1-56 . https://doi.org/10.1090/jag/765
Given a strict simple degeneration $f \colon X\to C$ the first three authors previously constructed a degeneration $I^n_{X/C} \to C$ of the relative degree $n$ Hilbert scheme of $0$-dimensional subschemes. In this paper we investigate the geometry of
Autor:
Simon C. F. Rose, Lars Halvard Halle
Publikováno v:
ResearcherID
We investigate the problem of counting tropical genus g curves in g-dimensional tropical abelian varieties. We do this by studying maps from principally polarized tropical abelian varieties into a fixed abelian variety. For g = 2, 3, we prove that th
Publikováno v:
Manuscripta Mathematica. 148:283-301
We generalize the classical Hilbert-Mumford criteria for GIT (semi-)stability in terms of one parameter subgroups of a linearly reductive group G over a field k, to the relative situation of an equivariant, projective morphism X -> Spec A to a noethe
Autor:
Johannes Nicaise, Lars Halvard Halle
We study motivic zeta functions of degenerating families of Calabi-Yau varieties. Our main result says that they satisfy an analog of Igusa's monodromy conjecture if the family has a so-called Galois-equivariant Kulikov model; we provide several clas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f5f2d27262ce0928d653db53321056c
http://hdl.handle.net/10044/1/52210
http://hdl.handle.net/10044/1/52210
Autor:
Lars Halvard Halle, Johannes Nicaise
Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivat
Autor:
Lars Halvard Halle, Johannes Nicaise
Publikováno v:
Néron Models and Base Change ISBN: 9783319266374
In this chapter, we assume that k is algebraically closed. We will show how the motivic zeta function of a tamely ramified semi-abelian K-variety admits a cohomological interpretation by means of a trace formula, which is quite similar to the Grothen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2a0d96fbee907f1fcb6228dcc44b24aa
https://doi.org/10.1007/978-3-319-26638-1_9
https://doi.org/10.1007/978-3-319-26638-1_9
Autor:
Johannes Nicaise, Lars Halvard Halle
Publikováno v:
Néron Models and Base Change ISBN: 9783319266374
The aim of this book is to make a detailed analysis of the behaviour of Neron models of semi-abelian varieties under ramified base change, and apply the results to the study of motivic zeta functions. The main invariants we are interested in are the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9bd548af174527a937e3e2900a9d7e55
https://doi.org/10.1007/978-3-319-26638-1_1
https://doi.org/10.1007/978-3-319-26638-1_1
Autor:
Lars Halvard Halle, Johannes Nicaise
Publikováno v:
Néron Models and Base Change ISBN: 9783319266374
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b2ec4786c07f51fc1c9c50f8237efc9e
https://doi.org/10.1007/978-3-319-26638-1_3
https://doi.org/10.1007/978-3-319-26638-1_3
Autor:
Johannes Nicaise, Lars Halvard Halle
Publikováno v:
Néron Models and Base Change ISBN: 9783319266374
In this chapter, we recall the definition of the base change conductor of a semi-abelian K-variety G and of Edixhoven’s filtration on the special fiber of the Neron model of G. We use Edixhoven’s construction to define a new invariant, the tame b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::08b50b169fd756ecf40f319ee1ab77e4
https://doi.org/10.1007/978-3-319-26638-1_6
https://doi.org/10.1007/978-3-319-26638-1_6
Autor:
Johannes Nicaise, Lars Halvard Halle
Publikováno v:
Néron Models and Base Change ISBN: 9783319266374
In this chapter, we assume that k is algebraically closed. We will prove in Theorem 8.3.1.2 the rationality of the motivic zeta function of a Jacobian variety, and we show that it has a unique pole, which coincides with the tame base change conductor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7541b21d753084e86104dab9cd5b303f
https://doi.org/10.1007/978-3-319-26638-1_8
https://doi.org/10.1007/978-3-319-26638-1_8