Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Larry J Friedman"'
Publikováno v:
eLife, Vol 11 (2022)
Multi-wavelength single-molecule fluorescence colocalization (CoSMoS) methods allow elucidation of complex biochemical reaction mechanisms. However, analysis of CoSMoS data is intrinsically challenging because of low image signal-to-noise ratios, non
Externí odkaz:
https://doaj.org/article/b98eaed225444b799ce96b62465d8143
Publikováno v:
eLife, Vol 10 (2021)
Replication origins are licensed by loading two Mcm2-7 helicases around DNA in a head-to-head conformation poised to initiate bidirectional replication. This process requires origin–recognition complex (ORC), Cdc6, and Cdt1. Although different Cdc6
Externí odkaz:
https://doaj.org/article/73249fb1ceb4410f8b531127b162df23
DDK regulates replication initiation by controlling the multiplicity of Cdc45-GINS binding to Mcm2-7
Autor:
Lorraine De Jesús-Kim, Larry J Friedman, Marko Lõoke, Christian K Ramsoomair, Jeff Gelles, Stephen P Bell
Publikováno v:
eLife, Vol 10 (2021)
The committed step of eukaryotic DNA replication occurs when the pairs of Mcm2-7 replicative helicases that license each replication origin are activated. Helicase activation requires the recruitment of Cdc45 and GINS to Mcm2-7, forming Cdc45-Mcm2-7-
Externí odkaz:
https://doaj.org/article/715e1986ec1e4eeb99b6b1b5a984de21
Publikováno v:
eLife, Vol 8 (2019)
Licensing of eukaryotic origins of replication requires DNA loading of two copies of the Mcm2-7 replicative helicase to form a head-to-head double-hexamer, ensuring activated helicases depart the origin bidirectionally. To understand the formation an
Externí odkaz:
https://doaj.org/article/0f582ea2606e4994a72ac5570c6cc929
Autor:
Sarah K Stumper, Harini Ravi, Larry J Friedman, Rachel Anne Mooney, Ivan R Corrêa Jnr, Anne Gershenson, Robert Landick, Jeff Gelles
Publikováno v:
eLife, Vol 8 (2019)
RNA polymerases (RNAPs) contain a conserved ‘secondary channel’ which binds regulatory factors that modulate transcription initiation. In Escherichia coli, the secondary channel factors (SCFs) GreB and DksA both repress ribosomal RNA (rRNA) trans
Externí odkaz:
https://doaj.org/article/efe9783f6e84415080158b1956a9cb2d
Publikováno v:
eLife, Vol 7 (2018)
Most human genes contain multiple introns, necessitating mechanisms to effectively define exons and ensure their proper connection by spliceosomes. Human spliceosome assembly involves both cross-intron and cross-exon interactions, but how these work
Externí odkaz:
https://doaj.org/article/87a46f33740a469c9492fc4e66136c1a
Autor:
Rahul Chadda, Venkatramanan Krishnamani, Kacey Mersch, Jason Wong, Marley Brimberry, Ankita Chadda, Ludmila Kolmakova-Partensky, Larry J Friedman, Jeff Gelles, Janice L Robertson
Publikováno v:
eLife, Vol 5 (2016)
Interactions between membrane protein interfaces in lipid bilayers play an important role in membrane protein folding but quantification of the strength of these interactions has been challenging. Studying dimerization of ClC-type transporters offers
Externí odkaz:
https://doaj.org/article/750c557401cb468b888144ee7a580349
Publikováno v:
eLife, Vol 5 (2016)
The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an a
Externí odkaz:
https://doaj.org/article/38d552474b4040a498a9eb18049e312d
Publikováno v:
bioRxiv
Free-living bacteria have regulatory systems that can quickly reprogram gene transcription in response to changes in cellular environment. The RapA ATPase, a prokaryotic homolog of the eukaryote Swi2/Snf2 chromatin remodeling complex, may facilitate
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c37f9bb92329f246dbbb8d14df8f253b
https://doi.org/10.1101/2023.03.22.533849
https://doi.org/10.1101/2023.03.22.533849
Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is preven
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ae8325f0adbbf31972d1e2a830b52574
https://doi.org/10.1101/2023.01.02.522488
https://doi.org/10.1101/2023.01.02.522488