Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Larry Gogoladze"'
Autor:
Larry Gogoladze
Publikováno v:
Georgian Mathematical Journal. 29:527-532
The paper deals with the convergence of the series ∑ k = 1 ∞ | c k ( f ) | r γ k , r ∈ ( 0 , 2 ) , \sum_{k=1}^{\infty}|c_{k}(f)|^{r}\gamma_{k},\quad r\in(0,2), where c k ( f ) {c_{k}(f)} are the Fourier coefficients of the function
Autor:
Larry Gogoladze, Giorgi Cagareishvili
Publikováno v:
Publicationes Mathematicae Debrecen. 100:277-294
Autor:
Larry Gogoladze, Giorgi Cagareishvili
Publikováno v:
Georgian Mathematical Journal.
Stefan Banach proved that even the Fourier series of the function f ( x ) = 1 {f(x)=1} ( x ∈ [ 0 , 1 ] ) {(x\in[0,1])} might not be convergent for some orthonormal systems (ONS). Thus we can conclude that the Fourier series of functions belongi
Autor:
Giorgi Cagareishvili, Larry Gogoladze
Publikováno v:
Известия Российской академии наук. Серия математическая. 85:60-72
В работе найдены неулучшаемые в определенном смысле достаточные условия, которым должны удовлетворять функции ортонормированной сист
Autor:
G. Cagareishvili, Larry Gogoladze
Publikováno v:
Acta Mathematica Hungarica. 161:327-340
We investigate the behavior of Fourier coefficients of Lip α class functions with respect to general orthonormal systems (ONS). The generalizations in a certain sense of some theorems by S. Szasz, B. I. Golubov and S. V. Bochkarev are obtained.
Autor:
V. Tsagareishvili, Larry Gogoladze
Publikováno v:
Moscow Mathematical Journal. 19:695-707
Autor:
Larry Gogoladze, V. Tsagareishvili
Publikováno v:
Acta Mathematica Hungarica. 158:109-131
It is well known that if $${f \in L_{2}(0,1)}$$ is an arbitrary function ( $${{f(x) \nsim 0}, x \in [0,1]}$$ ) then its Fourier coefficients with respect to general orthonormal systems (ONS) may belong only to $${\ell_2}$$ . Thus in the general case
Autor:
V. Tsagareishvili, Larry Gogoladze
Publikováno v:
Georgian Mathematical Journal. 25:357-361
In the paper, we investigate the relation between the properties of functions and their Fourier–Haar coefficients. We show that for some classes of functions Fourier–Haar coefficients have constant signs and order of magnitude. In 1964, Golubov p
Autor:
Larry Gogoladze, V. Sh. Tsagareishvili
Publikováno v:
Siberian Mathematical Journal. 59:65-72
This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function
Autor:
V. Tsagareishvili, Larry Gogoladze
Publikováno v:
Publicationes Mathematicae Debrecen. 91:391-402