Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Larisa N Soldatova"'
Autor:
Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H Brush, Bill Bug, Marcus C Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom, Michel Dumontier, Liju Fan, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Alejandra Gonzalez-Beltran, Melissa A Haendel, Yongqun He, Mervi Heiskanen, Tina Hernandez-Boussard, Mark Jensen, Yu Lin, Allyson L Lister, Phillip Lord, James Malone, Elisabetta Manduchi, Monnie McGee, Norman Morrison, James A Overton, Helen Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H Scheuermann, Daniel Schober, Barry Smith, Larisa N Soldatova, Christian J Stoeckert, Chris F Taylor, Carlo Torniai, Jessica A Turner, Randi Vita, Patricia L Whetzel, Jie Zheng
Publikováno v:
PLoS ONE, Vol 11, Iss 4, p e0154556 (2016)
The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide
Externí odkaz:
https://doaj.org/article/f988ee11ce904507a3a11c59e8f2e477
Autor:
Michael Halper, Larisa N. Soldatova, Mathias Brochhausen, Fatima Sabiu Maikore, Christopher Ochs, Yehoshua Perl
Publikováno v:
Applied Ontology. 18:5-29
Reuse of elements from existing ontologies in the construction of new ontologies is a foundational principle in ontological design. It offers the benefits, among others, of consistency and interoperability between such knowledge structures as well as
Autor:
Andy M Davis, Ross D. King, Ivan Olier, Joaquin Vanschoren, Larisa N. Soldatova, Oghenejokpeme I. Orhobor, Tirtharaj Dash
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 118(49):e2108013118. National Academy of Sciences
Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the National Academy of Sciences of the United States of America
Significance Machine learning (ML) is the branch of artificial intelligence (AI) that develops computational systems that learn from experience. In supervised ML, the ML system generalizes from labelled examples to learn a model that can predict the
Autor:
Andrey Rzhetsky, Ross D. King, Emily Sheng, Joel Matthew, Weidi Pan, James A. Evans, Fenia Christopoulou, Yu Li, Larisa N. Soldatova, Sahil Garg, José Luis Ambite, Ulf Hermjakob, Kanix Wang, Daniel Marcu, Halima Alachram, Brendan Chambers, Sophia Ananiadou, Annika Marie Schoene, Robert Stevens, Xin Gao, Aram Galstyan, Bohdan B. Khomtchouk, Maolin Li, Tim Beißbarth, Edgar Wingender
Publikováno v:
NPJ Systems Biology and Applications
npj Systems Biology and Applications, Vol 7, Iss 1, Pp 1-8 (2021)
npj Systems Biology and Applications, Vol 7, Iss 1, Pp 1-8 (2021)
Machine reading (MR) is essential for unlocking valuable knowledge contained in millions of existing biomedical documents. Over the last two decades1,2, the most dramatic advances in MR have followed in the wake of critical corpus development3. Large
Autor:
Aram Galstyan, Halima Alachram, Fenia Christopoulou, Edgar Wingender, Tim Beißbarth, Ross D. King, James A. Evans, Sophia Ananiadou, Emily Sheng, Bohdan B. Khomtchouk, Daniel Marcu, Maolin Li, Xin Gao, Brendan Chambers, Robert Stevens, Yu Li, Sahil Garg, Ulf Hermjakob, Larisa N. Soldatova, Kanix Wang, Andrey Rzhetsky, José Luis Ambite
Machine reading is essential for unlocking valuable knowledge contained in the millions of existing biomedical documents. Over the last two decades1,2, the most dramatic advances in machine-reading have followed in the wake of critical corpus develop
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::62037440ebd188b2721ada5cbf754832
https://doi.org/10.1101/2020.11.05.368969
https://doi.org/10.1101/2020.11.05.368969
Publikováno v:
Machine Learning, 109(11), 1993-1995. Springer
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec0bc83d0a131d2fc2b3ecb88f72817e
https://research.tue.nl/nl/publications/f7b9542c-8eaa-40c8-8fdf-bea7c5690480
https://research.tue.nl/nl/publications/f7b9542c-8eaa-40c8-8fdf-bea7c5690480
Publikováno v:
King, R D, Schuler Costa, V, Mellingwood, C & Soldatova, L N 2018, ' Automating sciences : Philosophical and social dimensions ', IEEE Technology and Society Magazine, vol. 37, no. 1, pp. 40-46 . https://doi.org/10.1109/MTS.2018.2795097
Clark Glymour argued in 2004 that "despite a lack of public fanfare, there is mounting evidence that we are in the midst of ... a revolution - premised on the automation of scientific discovery" [1]. This paper highlights some of the philosophical an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59d2a142f0515bd45b1d3a2eff43e98b
Autor:
Jérémy Besnard, Joaquin Vanschoren, Crina Grosan, Jan N. van Rijn, Ross D. King, Noureddin Sadawi, Ivan Olier, Larisa N. Soldatova, G. Richard J. Bickerton
Publikováno v:
Journal of Cheminformatics
Journal of Cheminformatics, 11(1):68. BioMed Central
Journal of Cheminformatics, Vol 11, Iss 1, Pp 1-13 (2019)
Journal of Cheminformatics, 11, 68
Journal of Cheminformatics, 11(1):68. BioMed Central
Journal of Cheminformatics, Vol 11, Iss 1, Pp 1-13 (2019)
Journal of Cheminformatics, 11, 68
© The Author(s) 2019. The goal of quantitative structure activity relationship (QSAR) learning is to learn a function that, given the structure of a small molecule (a potential drug), outputs the predicted activity of the compound. We employed multi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::284b488905d030ea265df05dc9d34242
Publikováno v:
Discovery Science ISBN: 9783030615260
DS
DS
Ensemble learning has been shown to significantly improve predictive accuracy in a variety of machine learning problems. For a given predictive task, the goal of ensemble learning is to improve predictive accuracy by combining the predictive power of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2a22f52c9b42969deccb523426e25fa7
https://doi.org/10.1007/978-3-030-61527-7_22
https://doi.org/10.1007/978-3-030-61527-7_22
Publikováno v:
Discovery Science ISBN: 9783030615260
DS
DS
The key to success in machine learning is the use of effective data representations. The success of deep neural networks (DNNs) is based on their ability to utilize multiple neural network layers, and big data, to learn how to convert simple input re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6fc1aa3418e01ab465969e3337956fa5
https://doi.org/10.1007/978-3-030-61527-7_25
https://doi.org/10.1007/978-3-030-61527-7_25