Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Lario, Joan"'
We present several ruler and compass practical geometric constructions that can be performed in the lemniscate curve. To be precise, we provide recipes for halving, doubling, adding, subtracting, and transferring lemniscate arcs with ruler and compas
Externí odkaz:
http://arxiv.org/abs/2410.14349
Autor:
Bars, Francesc, Lario, Joan Carles
We carry out a survey on curves defined over finite fields that are Diophantine stable; that is, with the property that the set of points of the curve is not altered under a proper field extension. First, we derive some general results of such curves
Externí odkaz:
http://arxiv.org/abs/2409.07086
Autor:
Lario, Joan1,2 (AUTHOR) jlario@cigip.upv.es, Mateos, Javier1 (AUTHOR), Psarommatis, Foivos1,3 (AUTHOR), Ortiz, Ángel1 (AUTHOR)
Publikováno v:
International Journal of Production Research. Jul2024, p1-16. 16p. 3 Illustrations.
Autor:
Brunat, Josep M., Lario, Joan-C.
Let ${\mathcal F}=(F_i:i\ge 0)$ be the sequence of Fibonacci numbers, and $j$ and $e$ be non negative integers. We study the periodicity of the power Fibonacci sequences ${\mathcal F}^e(F_j)=(F_i^e\pmod{F_j}: i\ge 0)$. It is shown that for every $j,e
Externí odkaz:
http://arxiv.org/abs/2204.00234
Autor:
Brunat, Josep M., Lario, Joan-Carles
Motivated by a WhattsApp message, we find out the integers $x> y\ge 1$ such that $(x+1)/(y+1)=(x\circ(y+1))/(y\circ (x+1))$, where $\circ$ means the concatenation of the strings of two natural numbers (for instance $783\circ 56=78356$). The discussio
Externí odkaz:
http://arxiv.org/abs/2103.05306
Publikováno v:
In Journal of Materials Research and Technology January-February 2022 16:1435-1444
We study the inverse Jacobian problem for the case of Picard curves over $\mathbb{C}$. More precisely, we elaborate on an algorithm that, given a small period matrix $\Omega\in \mathbb{C}^{3\times 3}$ corresponding to a principally polarized abelian
Externí odkaz:
http://arxiv.org/abs/1611.02582
Autor:
Cardona, Gabriel, Lario, Joan-Carles
Publikováno v:
In Journal of Number Theory April 2020 209:195-211
Autor:
Lario, Joan-C., Somoza, Anna
Let C/Q be the genus 3 Picard curve given by the affine model y^3=x^4-x. In this paper we compute its Sato-Tate group, show the generalized Sato-Tate conjecture for C, and compute the statistical moments for the limiting distribution of the normalize
Externí odkaz:
http://arxiv.org/abs/1409.6020
Publikováno v:
Can. J. Math.-J. Can. Math. 68 (2016) 361-394
Let C denote the Fermat curve over Q of prime exponent l. The Jacobian Jac(C) of C splits over Q as the product of Jacobians Jac(C_k), 0< k < l-1, where C_k are curves obtained as quotients of C by certain subgroups of automorphisms of C. It is well
Externí odkaz:
http://arxiv.org/abs/1403.0807