Zobrazeno 1 - 10
of 273
pro vyhledávání: '"Large matrices"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cooper, Martha1
Publikováno v:
Journal of Marketing Research (JMR). May85, Vol. 22 Issue 2, p225-226. 2p.
Autor:
Kumudha Raimond, Deena P. Francis
Publikováno v:
Journal of King Saud University: Computer and Information Sciences, Vol 34, Iss 1, Pp 1455-1465 (2022)
Approximate Matrix Multiplication (AMM) has emerged as a useful and computationally inexpensive substitute for actual multiplication of large matrices. Randomized as well as deterministic solutions to AMM were provided in the past. The latest work pr
Publikováno v:
SIAM Journal on Scientific Computing. 43:A3733-A3759
An efficient Krylov subspace algorithm for computing actions of the $\varphi$ matrix function for large matrices is proposed. This matrix function is widely used in exponential time integration, Ma...
Autor:
Okoh Ufuoma
Publikováno v:
Asian Research Journal of Mathematics. :1-13
The chief object of this work present a new and simple condensation method of finding determinants of large matrices and solving large linear systems.
Publikováno v:
IEEE Transactions on Power Systems. 34:3081-3089
In this paper, we address the load-flow (LF) problem of very large scale systems. These types of systems show a very narrow region of attraction, and most of LF solvers tend to fail when a flat initial guess point is used. On the other hand, the solu
Publikováno v:
Numerical Linear Algebra with Applications. 28
Publikováno v:
Remote Sensing
Volume 12
Issue 18
Remote Sensing, Vol 12, Iss 2877, p 2877 (2020)
Volume 12
Issue 18
Remote Sensing, Vol 12, Iss 2877, p 2877 (2020)
The total variation (TV) method has been applied to realizing airborne scanning radar super-resolution imaging while maintaining the outline of the target. The iterative reweighted norm (IRN) approach is an algorithm for addressing the minimum Lp nor
Publikováno v:
Mathematics, Vol 8, Iss 1325, p 1325 (2020)
Mathematics
Volume 8
Issue 8
Mathematics
Volume 8
Issue 8
The Schatten quasi-norm is an approximation of the rank, which is tighter than the nuclear norm. However, most Schatten quasi-norm minimization (SQNM) algorithms suffer from high computational cost to compute the singular value decomposition (SVD) of
Autor:
Fabio Durastante, Daniele Bertaccini
Publikováno v:
Journal of computational and applied mathematics 370 (2020). doi:10.1016/j.cam.2019.112663
info:cnr-pdr/source/autori:Bertaccini, D.; Durastante, F./titolo:Computing functions of very large matrices with small TT%2FQTT ranks by quadrature formulas/doi:10.1016%2Fj.cam.2019.112663/rivista:Journal of computational and applied mathematics/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:370
info:cnr-pdr/source/autori:Bertaccini, D.; Durastante, F./titolo:Computing functions of very large matrices with small TT%2FQTT ranks by quadrature formulas/doi:10.1016%2Fj.cam.2019.112663/rivista:Journal of computational and applied mathematics/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:370
The computation of matrix functions using quadrature formulas and rational approximations of very large structured matrices using tensor trains (TT), and quantized tensor trains (QTT) is considered here. The focus is on matrices with a small TT/QTT r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a7559105d303ae3bd2975a912496437
http://hdl.handle.net/2108/230724
http://hdl.handle.net/2108/230724