Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Lappas, Stefanos"'
Autor:
Hytönen, Tuomas, Lappas, Stefanos
In this paper we revisit the theory of one-parameter semigroups of linear operators on Banach spaces in order to prove quantitative bounds for bounded holomorphic semigroups. Subsequently, relying on these bounds we obtain new quantitative versions o
Externí odkaz:
http://arxiv.org/abs/2208.14198
Autor:
Lappas, Stefanos
Publikováno v:
Studia Mathematica 265 (2022), 177-195
In a previous work, "compact versions" of Rubio de Francia's weighted extrapolation theorem were proved, which allow one to extrapolate the compactness of an linear operator from just one space to the full range of weighted Lebesgue spaces, where thi
Externí odkaz:
http://arxiv.org/abs/2103.10304
Autor:
Hytönen, Tuomas, Lappas, Stefanos
Publikováno v:
Indag. Math. 33 (2), (2022), 397-420
In a previous paper, we obtained several "compact versions" of Rubio de Francia's weighted extrapolation theorem, which allowed us to extrapolate the compactness of linear operators from just one space to the full range of weighted Lebesgue spaces, w
Externí odkaz:
http://arxiv.org/abs/2012.10407
Autor:
Hytönen, Tuomas, Lappas, Stefanos
In a previous paper by one of us, a "compact version" of Rubio de Francia's weighted extrapolation theorem was proved, which allows one to extrapolate the compactness of an operator from just one space to the full range of weighted spaces, where this
Externí odkaz:
http://arxiv.org/abs/2006.15858
Autor:
Hytönen, Tuomas, Lappas, Stefanos
Publikováno v:
Journal of Fourier Analysis and Applications 28(4), Paper No. 66, 2022
The representation of a general Calder\'on--Zygmund operator in terms of dyadic Haar shift operators first appeared as a tool to prove the $A_2$ theorem, and it has found a number of other applications. In this paper we prove a new dyadic representat
Externí odkaz:
http://arxiv.org/abs/2003.04019
Autor:
Hytönen, Tuomas, Lappas, Stefanos
Let $T$ be a linear operator that, for some $p_1\in(1,\infty)$, is bounded on $L^{p_1}(\tilde w)$ for all $\tilde w\in A_{p_1}(\mathbb R^d)$ and in addition compact on $L^{p_1}(w_1)$ for some $w_1\in A_{p_1}(\mathbb R^d)$. Then $T$ is bounded and com
Externí odkaz:
http://arxiv.org/abs/2003.01606
Autor:
Hytönen, Tuomas, Lappas, Stefanos
Publikováno v:
In Indagationes Mathematicae March 2022 33(2):397-420
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lappas, Stefanos
Rubio de Francia’s extrapolation theorem constitutes a powerful result in the theory of weighted norm inequalities, which is a subarea of Harmonic Analysis. It allows one to deduce an inequality (often but not necessarily: the boundedness of an ope
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1593::a9010a5f5c1f7165c1d5825721b13bb1
http://hdl.handle.net/10138/345143
http://hdl.handle.net/10138/345143