Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Lanza, Valeriano"'
For $n\ge 1$ we show that the length 1 nested Hilbert scheme of the total space $X_n$ of the line bundle $\mathcal O_{\mathbb P^1}(-n)$, parameterizing pairs of nested 0-cycles in $X_n$, is a quiver variety associated with a suitable quiver with rela
Externí odkaz:
http://arxiv.org/abs/2403.18099
In a previous paper, the first two named authors established an isomorphism between the moduli space of framed flags of sheaves on the projective plane and the moduli space of stable representations of a certain quiver. In the present note, we substi
Externí odkaz:
http://arxiv.org/abs/2103.13440
Publikováno v:
SIGMA 16 (2020), 069, 13 pages
We prove that certain quiver varieties are irreducible and therefore are isomorphic to Hilbert schemes of points of the total spaces of the bundles $\mathcal O_{\mathbb P^1}(-n)$ for $n \ge 1$.
Externí odkaz:
http://arxiv.org/abs/2003.05890
Autor:
Lanza, Valeriano, Martino, Ivan
In this manuscript we sharpen the lower bound on the codimension of the irreducible components of the Noether-Lefschetz locus of surfaces in projective toric threefolds given in [BG17]. We also provide a simpler proof of Theorem 4.11 in [BG17], which
Externí odkaz:
http://arxiv.org/abs/1807.11426
Publikováno v:
Asian J. Math. 23 (2019) 905-918
We provide a partial classification of semistable Higgs bundles over a simply connected Calabi-Yau manifolds. Applications to a conjecture about a special class of semistable Higgs bundles are given. In particular, the conjecture is proved for K3 and
Externí odkaz:
http://arxiv.org/abs/1710.03671
In the first part of this paper we provide a survey of some fundamental results about moduli spaces of framed sheaves on smooth projective surfaces. In particular, we outline a result by Bruzzo and Markushevich, and discuss a few significant examples
Externí odkaz:
http://arxiv.org/abs/1610.02731
Publikováno v:
J. Pure Appl. Algebra 221 (2017) 2132-2155
In a previous paper, a realization of the moduli space of framed torsion-free sheaves on Hirzebruch surfaces in terms of monads was given. We build upon that result to construct ADHM data for the Hilbert scheme of points of the total space of the lin
Externí odkaz:
http://arxiv.org/abs/1504.02987
Publikováno v:
Adv. Geom. 15 (2015) 55-76
Relying on a monadic description of the moduli space of framed sheaves on Hirzebruch surfaces, we construct ADHM data for the Hilbert scheme of points of the total space of the line bundle $\mathcal O(-n)$ on $\mathbb P^1$.
Comment: 23 pages. v2
Comment: 23 pages. v2
Externí odkaz:
http://arxiv.org/abs/1403.0460
Publikováno v:
In Journal of Pure and Applied Algebra August 2017 221(8):2132-2155
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.