Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Lanqing, Hong"'
Autor:
Verwimp, Eli, Yang, Kuo, Parisot, Sarah, Lanqing, Hong, McDonagh, Steven, Pérez-Pellitero, Eduardo, De Lange, Matthias, Tuytelaars, Tinne
In this paper we describe the design and the ideas motivating a new Continual Learning benchmark for Autonomous Driving (CLAD), that focuses on the problems of object classification and object detection. The benchmark utilises SODA10M, a recently rel
Externí odkaz:
http://arxiv.org/abs/2210.03482
Autor:
Verwimp, Eli, Yang, Kuo, Parisot, Sarah, Lanqing, Hong, McDonagh, Steven, Pérez-Pellitero, Eduardo, De Lange, Matthias, Tuytelaars, Tinne
Training models continually to detect and classify objects, from new classes and new domains, remains an open problem. In this work, we conduct a thorough analysis of why and how object detection models forget catastrophically. We focus on distillati
Externí odkaz:
http://arxiv.org/abs/2204.01407
Autor:
Shengliang Cheng, Zhen Fan, Jingjing Rao, Lanqing Hong, Qicheng Huang, Ruiqiang Tao, Zhipeng Hou, Minghui Qin, Min Zeng, Xubing Lu, Guofu Zhou, Guoliang Yuan, Xingsen Gao, Jun-Ming Liu
Publikováno v:
iScience, Vol 23, Iss 12, Pp 101874- (2020)
Summary: Ferroelectric synapses using polarization switching (a purely electronic switching process) to induce analog conductance change have attracted considerable interest. Here, we propose ferroelectric photovoltaic (FePV) synapses that use polari
Externí odkaz:
https://doaj.org/article/ee588bab9dde4627a09703610b560bfd
Autor:
Eli Verwimp, Kuo Yang, Sarah Parisot, Lanqing Hong, Steven McDonagh, Eduardo Pérez-Pellitero, Matthias De Lange, Tinne Tuytelaars
In this paper we describe the design and the ideas motivating a new Continual Learning benchmark for Autonomous Driving (CLAD), that focuses on the problems of object classification and object detection. The benchmark utilises SODA10M, a recently rel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e5ba898e59714f9b15a4afbf45881e5
http://arxiv.org/abs/2210.03482
http://arxiv.org/abs/2210.03482
Autor:
Runpeng Yu, Hong Zhu, Kaican Li, Lanqing Hong, Rui Zhang, Nanyang Ye, Shao-Lun Huang, Xiuqiang He
Due to the poor generalization performance of traditional empirical risk minimization (ERM) in the case of distributional shift, Out-of-Distribution (OoD) generalization algorithms receive increasing attention. However, OoD generalization algorithms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49329e84010d43818ee86eaa16199aba
http://arxiv.org/abs/2206.05749
http://arxiv.org/abs/2206.05749
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200588
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bd07ebc88d25118f5e06ce5a3bce2af7
https://doi.org/10.1007/978-3-031-20059-5_2
https://doi.org/10.1007/978-3-031-20059-5_2
Autor:
Eli Verwimp, Kuo Yang, Sarah Parisot, Lanqing Hong, Steven McDonagh, Eduardo Pérez Pellitero, Matthias De Lange, Tinne Tuytelaars
Publikováno v:
Eli Verwimp
Training models continually to detect and classify objects, from new classes and new domains, remains an open problem. In this work, we conduct a thorough analysis of why and how object detection models forget catastrophically. We focus on distillati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e889b6627f0d1761f03fe9c37fcc80b
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031198410
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8a1f4f72d9a772b544c333176bd9b80e
https://doi.org/10.1007/978-3-031-19842-7_8
https://doi.org/10.1007/978-3-031-19842-7_8
Autor:
Kaican Li, Kai Chen, Haoyu Wang, Lanqing Hong, Chaoqiang Ye, Jianhua Han, Yukuai Chen, Wei Zhang, Chunjing Xu, Dit-Yan Yeung, Xiaodan Liang, Zhenguo Li, Hang Xu
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031198380
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::979aeab7550c21c55270392f8a0bbc8c
https://doi.org/10.1007/978-3-031-19839-7_24
https://doi.org/10.1007/978-3-031-19839-7_24
Publikováno v:
2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).