Zobrazeno 1 - 10
of 584
pro vyhledávání: '"Landmark analysis"'
Autor:
Zheng Wang, Dahai Yu, Uchechukwu Levi Osuagwu, Karen Pickering, John Baker, Richard Cutfield, Yamei Cai, Brandon J. Orr-Walker, Gerhard Sundborn, Bingjie Qu, Zhanzheng Zhao, David Simmons
Publikováno v:
BMC Cancer, Vol 24, Iss 1, Pp 1-11 (2024)
Abstract Background In people with prediabetes, the link between developing type 2 diabetes (T2D) and cancer risk among those with impaired glucose tolerance (IGT) remains uncertain. We examined this association in IGT individuals from primary care i
Externí odkaz:
https://doaj.org/article/cb1bca6fd43c4bf491ce8b2057bfd96e
Publikováno v:
Current Oncology, Vol 31, Iss 7, Pp 3630-3642 (2024)
Current prediction models for patients with ostosarcoma are restricted to predictions from a single, static point in time, such as diagnosis or surgery. These approaches discard information which becomes available during follow-up and may have an imp
Externí odkaz:
https://doaj.org/article/a6ab7dff96934085b4bd0a7177ace834
Publikováno v:
Cancer Medicine, Vol 12, Iss 24, Pp 21861-21872 (2023)
Abstract Objective To generate an image‐driven biomarker (Rad_score) to predict tumor‐infiltrating regulatory T lymphocytes (Treg) in breast cancer (BC). Methods Overall, 928 BC patients were enrolled from the Cancer Genome Atlas (TCGA) for survi
Externí odkaz:
https://doaj.org/article/bb58fa080e494c7fa2b550b86d0ebd10
Autor:
Dahai Yu, Bingjie Qu, Uchechukwu Levi Osuagwu, Karen Pickering, John Baker, Richard Cutfield MBChB, Yamei Cai, Brandon J Orr-Walker, Gerhard Sundborn, Zhanzheng Zhao, David Simmons
Publikováno v:
Cardiovascular Diabetology, Vol 22, Iss 1, Pp 1-13 (2023)
Abstract Background This study aimed to examine the association between the incident onset of T2DM and 5- and 10-year risks of CVD and HF in people with IGT identified in primary care in South and West Auckland, New Zealand (NZ) between 1994 and 2019
Externí odkaz:
https://doaj.org/article/70f40aca53a5445bb2d96f3b648b66ef
Autor:
Jonas Grammens, Annemieke Van Haver, Imelda Lumban-Gaol, Femke Danckaers, Peter Verdonk, Jan Sijbers
Publikováno v:
Journal of Imaging, Vol 10, Iss 4, p 90 (2024)
Manual anatomical landmarking for morphometric knee bone characterization in orthopedics is highly time-consuming and shows high operator variability. Therefore, automation could be a substantial improvement for diagnostics and personalized treatment
Externí odkaz:
https://doaj.org/article/12bac3dff230412d8f7f13dff63c332d
Autor:
Yuichiro Takeda, Yusaku Kusaba, Yoko Tsukita, Yukari Uemura, Eisaku Miyauchi, Takaya Yamamoto, Hiroshi Mayahara, Akito Hata, Hidetsugu Nakayama, Satoshi Tanaka, Junji Uchida, Kazuhiro Usui, Tatsuya Toyoda, Motohiro Tamiya, Masahiro Morimoto, Yuko Oya, Takeshi Kodaira, Keiichi Jingu, Hisatoshi Sugiura
Publikováno v:
Clinical and Translational Radiation Oncology, Vol 37, Iss , Pp 57-63 (2022)
Purpose: Intensity-modulated radiotherapy (IMRT) is currently used more commonly than 3-dimensional conformal radiation for definitive thoracic radiation. We examined the efficacy profiles of concurrent chemoradiotherapy (CCRT) with IMRT after durval
Externí odkaz:
https://doaj.org/article/50d03165c0224d01824af0e40ec388da
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
BMC Medical Research Methodology, Vol 22, Iss 1, Pp 1-12 (2022)
Abstract Background In recent years there is increasing interest in modeling the effect of early longitudinal biomarker data on future time-to-event or other outcomes. Sometimes investigators are also interested in knowing whether the variability of
Externí odkaz:
https://doaj.org/article/afb24775b8e64c60b36e8cb17a3e88d5