Zobrazeno 1 - 10
of 167
pro vyhledávání: '"Lanconelli E."'
Autor:
Kogoj, Alessia E., Lanconelli, E.
Let $D\subseteq \mathbb{R}^n$, $n\geq 3$, be a bounded open set and let $x_0\in D$. Assume that the Newtonian potential of $D$ is proportional outside $D$ to the Newtonian potential of a mass concentrated at $\{x_0\}.$ Then $D$ is a Euclidean ball ce
Externí odkaz:
http://arxiv.org/abs/2411.00961
We establish a necessary and sufficient condition for a boundary point to be regular for the Dirichlet problem related to a class of Kolmogorov-type equations. Our criterion is inspired by two classical criteria for the heat equation: the Evans-Garie
Externí odkaz:
http://arxiv.org/abs/1701.01073
We consider a class of degenerate Ornstein-Uhlenbeck operators in $\mathbb{R}^{N}$, of the kind \[ \mathcal{A}\equiv\sum_{i,j=1}^{p_{0}}a_{ij}\partial_{x_{i}x_{j}}^{2} +\sum_{i,j=1}^{N}b_{ij}x_{i}\partial_{x_{j}}% \] where $(a_{ij}) ,(b_{ij}) $ are c
Externí odkaz:
http://arxiv.org/abs/0807.4020
Autor:
Birindelli, I., Lanconelli, E.
De Giorgi conjectured that bounded monotone solutions to the Ginzburg-Landau equation are constant along hyperplanes, in this paper we prove that in the Heisenberg group this conjecture doesn't hold true with respect to the center direction.
Com
Com
Externí odkaz:
http://arxiv.org/abs/math/0108198
Publikováno v:
Proceedings of the American Mathematical Society, 2013 Oct 01. 141(10), 3633-3638.
Externí odkaz:
https://www.jstor.org/stable/23562386
In this note we point out and correct a mistake in our paper “Global Lp estimates for degenerate Ornstein–Uhlenbeck operators with variable coefficients”, published in Math. Nachr. 286 (2013), no. 11–12,1087–1101.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4094::f391580ef5dbb8c750d9b0e733085b92
https://hdl.handle.net/11585/841679
https://hdl.handle.net/11585/841679
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bonfiglioli, A.1 bonfigli@dm.unibo.it, Lanconelli, E.1 lanconel@dm.unibo.it
Publikováno v:
Journal of Mathematical Sciences. Nov2010, Vol. 171 Issue 1, p22-33. 12p.
Publikováno v:
Scopus-Elsevier
Adv. Differential Equations 19, no. 7/8 (2014), 783-804
Adv. Differential Equations 19, no. 7/8 (2014), 783-804
The aim of this work is to extend a result by Suzuki and Watson concerning an inverse property for caloric functions. Our result applies, in particular, to the heat operator on stratified Lie groups and to Kolmogorov-Fokker-Planck-type operators. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::852f0a75671f7a6466956e524503a4b0
http://hdl.handle.net/11577/3299618
http://hdl.handle.net/11577/3299618