Zobrazeno 1 - 10
of 160
pro vyhledávání: '"Lanconelli, Ermanno"'
Autor:
Cupini, Giovanni, Lanconelli, Ermanno
Let $ D$ be a bounded open subset of $\mathbb R^n$ with $|\partial D| < \infty$ and let $x_0 $ be a point of $D$. We introduce a new parameter, that we call Kuran gap of $\partial D$ w.r.t. $x_0$. Roughly speaking, this parameter, denoted by $\mathca
Externí odkaz:
http://arxiv.org/abs/2309.11846
Autor:
Kogoj, Alessia E., Lanconelli, Ermanno
By exploiting an old idea first used by Pizzetti for the classical Laplacian, we introduce a notion of {\it asymptotic average solutions} making pointwise solvable every Poisson equation $\mathcal{L} u(x)=-f(x)$ with continuous data $f$, where $\math
Externí odkaz:
http://arxiv.org/abs/2209.08394
Autor:
Kogoj, Alessia E., Lanconelli, Ermanno
By an easy trick taken from caloric polynomial theory we construct a family $\mathscr{B}$ of $almost\ regular$ domains for the caloric Dirichlet problem. $\mathscr{B}$ is a basis of the Euclidean topology. This allows to build, with a basically eleme
Externí odkaz:
http://arxiv.org/abs/2106.10475
We prove, with a purely analytic technique, a one-side Liouville theorem for a class of Ornstein--Uhlenbeck operators ${\mathcal L_0}$ in $\mathbb{R}^N$, as a consequence of a Liouville theorem at "$t=- \infty$" for the corresponding Kolmogorov opera
Externí odkaz:
http://arxiv.org/abs/2002.04718
Autor:
Biagi, Stefano, Lanconelli, Ermanno
Maximum Principles on unbounded domains play a crucial r\^ole in several problems related to linear second-order PDEs of elliptic and parabolic type. In this paper we consider a class of sub-elliptic operators $\mathcal{L}$ in $\mathbb{R}^N$ and we e
Externí odkaz:
http://arxiv.org/abs/1908.10257
In this paper we are concerned with hypoelliptic diffusion operators $\mathcal{H}$. Our main aim is to show, with an axiomatic approach, that a Wiener-type test of $\mathcal{H}$-regularity of boundary points can be derived starting from the following
Externí odkaz:
http://arxiv.org/abs/1504.00519
Autor:
Biagi, Stefano, Lanconelli, Ermanno
Publikováno v:
In Journal of Differential Equations 15 November 2020 269(11):9680-9719
Autor:
Kogoj, Alessia E., Lanconelli, Ermanno
We prove some $L^p$-Liouville theorems for hypoelliptic second order Partial Differential Operators left translation invariant with respect to a Lie group composition law in $\mathbb{R}^n$. Results for both solutions and subsolutions are given.
Externí odkaz:
http://arxiv.org/abs/1411.5238
We consider a class of degenerate Ornstein-Uhlenbeck operators in $\mathbb{R}^{N}$, of the kind [\mathcal{A}\equiv\sum_{i,j=1}^{p_{0}}a_{ij}(x) \partial_{x_{i}x_{j}}^{2}+\sum_{i,j=1}^{N}b_{ij}x_{i}\partial_{x_{j}}%] where $(a_{ij})$ is symmetric unif
Externí odkaz:
http://arxiv.org/abs/1209.0387
Publikováno v:
Transactions of the American Mathematical Society, 2004 Jul 01. 356(7), 2709-2737.
Externí odkaz:
https://www.jstor.org/stable/3844906