Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Lan-Hsuan Huang"'
Publikováno v:
Annales Henri Poincaré. 23:2523-2543
We prove results on intrinsic flat convergence of points---a concept first explored by Sormani in \cite{Sormani-AA}. In particular, we discuss compatibility with Gromov-Hausdorff convergence of points---a concept first described by Gromov in \cite{Gr
Autor:
Lan-Hsuan Huang
Publikováno v:
Bulletin of the American Mathematical Society. 58:461-466
Autor:
Zhongshan An, Lan-Hsuan Huang
In our prior work toward Bartnik's static vacuum extension conjecture for near Euclidean boundary data, we establish a sufficient condition, called static regular, and confirm large classes of boundary hypersurfaces are static regular. In this note,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8beceae6f04f0357a2f6ba0026f32e4f
http://arxiv.org/abs/2206.00082
http://arxiv.org/abs/2206.00082
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2022:273-274
There is an error in the proof of Theorem 1.3 of the original article. Despite the problem, it is rigorously proved in joint work of the first two authors and Perales that Theorem 1.3 is true, using recent results of Allen and Perales that extend the
Autor:
Lan-Hsuan Huang, Dan A Lee
Publikováno v:
Notices of the American Mathematical Society. 69:1
Publikováno v:
Proceedings of the American Mathematical Society. 146:2647-2661
We show that if an asymptotically flat manifold with horizon boundary admits a global static potential, then the static potential must be zero on the boundary. We also show that if an asymptotically flat manifold with horizon boundary admits an unbou
We prove the rigidity of positive mass theorem for asymptotically hyperbolic manifolds. Namely, if the mass equality holds, then the manifold is isometric to hyperbolic space. The result was previously proven for spin manifolds or under special asymp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::020e0ab28c0be72bcc5d10d78a436396
http://arxiv.org/abs/1904.12010
http://arxiv.org/abs/1904.12010
Autor:
Dan A. Lee, Lan-Hsuan Huang
Publikováno v:
Communications in Mathematical Physics. 337:151-169
The rigidity of the positive mass theorem states that the only complete asymptotically flat manifold of nonnegative scalar curvature and zero mass is Euclidean space. We prove a corresponding stability theorem for spaces that can be realized as graph
Autor:
Dan A. Lee, Lan-Hsuan Huang
We affirm the rigidity conjecture of the spacetime positive mass theorem in dimensions less than eight. Namely, if an asymptotically flat initial data set satisfies the dominant energy condition and has $E=|P|$, then $E=|P|=0$, where $(E, P)$ is the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d7ef87ed3e5456c21f85cf00a17b0ccd
http://arxiv.org/abs/1706.03732
http://arxiv.org/abs/1706.03732
Autor:
Lan-Hsuan Huang1 lhhuang@math.stanford.edu
Publikováno v:
Communications in Mathematical Physics. Dec2010, Vol. 300 Issue 2, p331-373. 43p.