Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Lamboglia, Sara"'
A Cayley-Salmon equation for a smooth cubic surface $S$ in $\mathbb P^3$ is an expression of the form $l_1l_2l_3 - m_1m_2m_3 = 0$ such that the zero set is $S$ and $l_i$, $m_j$ are homogeneous linear forms. This expression was first used by Cayley an
Externí odkaz:
http://arxiv.org/abs/1912.01464
In this paper we focus on the tropical convex hull of convex sets and polyhedral complexes. We give a vertex description of the tropical convex hull of a line segment and a ray. %in \RR^{n+1}/\RR\mathbf{1}. Next we show that tropical convex hull and
Externí odkaz:
http://arxiv.org/abs/1912.01253
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lamboglia, Sara
We define a tropical version $\F_d(\trop X)$ of the Fano Scheme $\F_d(X)$ of a projective variety $X\subseteq \mathbb P^n$ and prove that $\F_d(\trop X)$ is the support of a polyhedral complex contained in $\trop \Grp(d,n)$. In general $\trop \F_d(X)
Externí odkaz:
http://arxiv.org/abs/1807.06283
Autor:
Améndola, Carlos, Kohn, Kathlén, Lamboglia, Sara, Maclagan, Diane, Smith, Ben, Sommars, Jeff, Tripoli, Paolo, Zajaczkowska, Magdalena
We introduce a package for doing tropical computations in Macaulay2. The package draws on the functionality of Gfan and Polymake while making the process as simple as possible for the end user. This provides a powerful and user friendly tool for comp
Externí odkaz:
http://arxiv.org/abs/1710.10651
We compute toric degenerations arising from the tropicalization of the full flag varieties $\mathcal{F}\ell_4$ and $\mathcal{F}\ell_5$ embedded in a product of Grassmannians. For $\mathcal{F}\ell_4$ and $\mathcal{F}\ell_5$ we compare toric degenerati
Externí odkaz:
http://arxiv.org/abs/1702.05480
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lamboglia, Sara, Ulirsch, Martin
What is the dollar game? What can you do to win it? Can you always win it? In this snapshot you will find answers to these questions as well as several of the mathematical surprises that lurk in the background, including a new perspective on a centur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1e283d29f9b784f3a493b04c37c08c1c
Autor:
Lamboglia, Sara
Tropical geometry is a developing area of mathematics in between algebraic geometry, combinatorics and polyhedral geometry. The main objects of study are tropical varieties which can be seen as polyhedral and combinatorial shadows of classical algebr
Externí odkaz:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.752530
Publikováno v:
Le Matematiche; 2020, Vol. 75 Issue 2, p559-574, 16p