Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Lakrec, Tsviqa"'
Autor:
Even-Zohar, Chaim, Lakrec, Tsviqa, Parisi, Matteo, Tessler, Ran, Sherman-Bennett, Melissa, Williams, Lauren
The amplituhedron is a mathematical object which was introduced to provide a geometric origin of scattering amplitudes in $\mathcal{N}=4$ super Yang Mills theory. It generalizes \emph{cyclic polytopes} and the \emph{positive Grassmannian}, and has a
Externí odkaz:
http://arxiv.org/abs/2402.15568
Autor:
Even-Zohar, Chaim, Lakrec, Tsviqa, Parisi, Matteo, Tessler, Ran, Sherman-Bennett, Melissa, Williams, Lauren
The amplituhedron $A_{n,k,m}(Z)$ is the image of the positive Grassmannian $Gr_{k,n}^{\geq 0}$ under the map ${Z}: Gr_{k,n}^{\geq 0} \to Gr_{k,k+m}$ induced by a positive linear map $Z:\mathbb{R}^n \to \mathbb{R}^{k+m}$. Motivated by a question of Ho
Externí odkaz:
http://arxiv.org/abs/2310.17727
The amplituhedron Ank4 is a geometric object, introduced by Arkani-Hamed and Trnka (2013) in the study of scattering amplitudes in quantum field theories. They conjecture that Ank4 admits a decomposition into images of BCFW positroid cells, arising f
Externí odkaz:
http://arxiv.org/abs/2112.02703
We study quantitative equidistribution in law of affine random walks on nilmanifolds, motivated by a result of Bourgain, Furman, Mozes and the third named author on the torus. Under certain assumptions, we show that a failure to having fast equidistr
Externí odkaz:
http://arxiv.org/abs/2103.06670
Given a random text over a finite alphabet, we study the frequencies at which fixed-length words occur as subsequences. As the data size grows, the joint distribution of word counts exhibits a rich asymptotic structure. We investigate all linear comb
Externí odkaz:
http://arxiv.org/abs/2012.00742
We consider random walks on the torus arising from the action of the group of affine transformations. We give a quantitative equidistribution result for this random walk under the assumption that the Zariski closure of the group generated by the line
Externí odkaz:
http://arxiv.org/abs/2003.03743
Autor:
Lakrec, Tsviqa
Consider a simple random walk on $\mathbb{Z}$ with a random coloring of $\mathbb{Z}$. Look at the sequence of the first $N$ steps taken in the random walk, together with the colors of the visited locations. We call this the record. From the record on
Externí odkaz:
http://arxiv.org/abs/1909.07470
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IMRN: International Mathematics Research Notices; Jun2022, Vol. 2022 Issue 11, p8003-8037, 35p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.