Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Lakaev, Saidakhmat N."'
We study the family $H_{\gamma \lambda \mu}(K)$, $K\in \mathbb{T}^2,$ of discrete Schr\"odinger operators, associated to the Hamiltonian of a system of two identical bosons on the two-dimen\-sional lattice $\mathbb{Z}^2,$ interacting through on one s
Externí odkaz:
http://arxiv.org/abs/2407.13552
We study the Schr\"odinger operators $H_{\gamma \lambda \mu}(K)$, $K\in\T$ being a fixed (quasi)momentum of the particles pair, associated with a system of two identical bosons on the one-dimensional lattice $\mathbb{Z}$, where the real quantities $\
Externí odkaz:
http://arxiv.org/abs/2304.11610
Publikováno v:
J. Phys. A: Math. Theor. 56 (2023), 315202 [23 pages]
We study the Schroedinger operators H_{\lambda\mu}(K), with K \in T_2 the fixed quasi-momentum of the particles pair, associated with a system of two identical fermions on the two-dimensional lattice Z_2 with first and second nearest-neighboring-site
Externí odkaz:
http://arxiv.org/abs/2303.10491
We consider a family $$ \widehat H_{a,b}(\mu)=\widehat H_0 +\mu \widehat V_{a,b}\quad \mu>0, $$ of Schr\"odinger-type operators on the two dimensional lattice $\mathbb{Z}^2,$ where $\widehat H_0$ is a Laurent-Toeplitz-type convolution operator with a
Externí odkaz:
http://arxiv.org/abs/2201.02800
We consider a wide class of the two-particle Schr\"{o}dinger operators $H_{\mu}(k)=H_{0}(k)+\mu V, \,\mu>0,$ with a fixed two-particle quasi-momentum $k$ in the $d$ -dimensional torus $\mathbb{T}^d$, associated to the Bose-Hubbard hamiltonian $H_{\mu
Externí odkaz:
http://arxiv.org/abs/2004.08813
We consider the hamiltonian $\mathrm{H}_{\mu},\mu\in \R$ of a system of three-particles (two identical fermions and one different particle) moving on the lattice ${\Z}^d ,\, d=1,2 $ interacting through repulsive $(\mu>0)$ or attractive $(\mu<0)$ zero
Externí odkaz:
http://arxiv.org/abs/1602.01571
We prove the existence of two-and three-particle bound states of the Schr\"odinger operators $h_\mu(k),k\in \T^d$ and $H_\mu(K),K\in \T^d$ associated to Hamiltonians $\mathrm{h}_{\mu}$ and $\mathrm{H}_{\mu}$ of a system of two and three identical bos
Externí odkaz:
http://arxiv.org/abs/1512.01983
We consider the Hamiltonian $\hat {\mathrm{H}}_{\mu}$ of a system of three identical particles(bosons) on the $d-$ dimensional lattice $\Z^d, d=1,2$ interacting via pairwise zero-range attractive potential $\mu<0$. We describe precise location and st
Externí odkaz:
http://arxiv.org/abs/1508.07581
Autor:
Lakaev, Saidakhmat N., Ozdemir, Ender
We consider a quantum particle moving in the one dimensional lattice Z and interacting with a indefinite sign external field v. We prove that the associated discrete Schroedinger operator H can have one or two eigenvalues, situated as below the botto
Externí odkaz:
http://arxiv.org/abs/1505.03645
A family $H_\mu(p),$ $\mu>0,$ $p\in\T^3$ of the Generalized Firedrichs models with the perturbation of rank one, associated to a system of two particles, moving on the three dimensional lattice $\mathbb{\Z}^3,$ is considered. The existence or absence
Externí odkaz:
http://arxiv.org/abs/1412.0598