Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Lai, Shanfa"'
In this paper, we systematically study the existence, asymptotic behaviors, uniqueness, and nonlinear orbital stability of traveling-wave solutions with small propagation speeds for the generalized surface quasi-geostrophic (gSQG) equation. Firstly w
Externí odkaz:
http://arxiv.org/abs/2301.00368
In this paper, we are concerned with the uniqueness and nonlinear stability of vortex rings for the 3D Euler equation. By utilizing Arnold 's variational principle for steady states of Euler equations and concentrated compactness method introduced by
Externí odkaz:
http://arxiv.org/abs/2206.10165
In this paper, we prove the nonlinear orbital stability of vortex dipoles for the quasi-geostrophic shallow-water (QGSW) equations. The vortex dipoles are explicit travelling wave solutions to the QGSW equations, which are analogues of the classical
Externí odkaz:
http://arxiv.org/abs/2206.02174
Publikováno v:
In Journal of Functional Analysis 15 October 2024 287(8)
In this paper, we study the existence and asymptotic properties of the traveling vortex pairs for the two-dimensional inviscid incompressible Boussinesq equations. We construct a family of traveling vorticity pairs, which constitutes the de-singulari
Externí odkaz:
http://arxiv.org/abs/2203.16999
We study the existence of different vortex-wave systems for inviscid gSQG flow, where the total circulation are produced by point vortices and vortices with compact support. To overcome several difficulties caused by the singular formulation and infi
Externí odkaz:
http://arxiv.org/abs/2112.00986
Publikováno v:
In Journal of Differential Equations 15 June 2024 394:152-173
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes
Externí odkaz:
http://arxiv.org/abs/2012.10918
Autor:
Cao, Daomin, Lai, Shanfa
Publikováno v:
In Journal of Differential Equations 5 July 2023 360:67-89
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.