Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Lagoutìère, Frédéric"'
Autor:
Lagoutière, Frédéric
Ce travail concerne les fluides eulériens compressibles constitués de plusieurs espèces, qui peuvent être mélangées ou séparées par des interfaces. Le mémoire est composé de trois parties. La première partie est consacrée à la résolutio
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00001385
http://tel.archives-ouvertes.fr/docs/00/04/48/59/PDF/tel-00001385.pdf
http://tel.archives-ouvertes.fr/docs/00/04/48/59/PDF/tel-00001385.pdf
This work is devoted to the study of a relaxation limit of the so-called aggregation equation with a pointy potential in one dimensional space. The aggregation equation is by now widely used to model the dynamics of a density of individuals attractin
Externí odkaz:
http://arxiv.org/abs/2105.13820
In this note, we propose the first mathematical derivation of a macroscopic Baer-Nunziato type system for compressible two-phase flows allowing two pressure state laws depending on the different phases. By doing so, we extend the results obtained by
Externí odkaz:
http://arxiv.org/abs/2012.06497
Publikováno v:
In Journal of Computational Physics 1 October 2023 490
In this article, we show that prescribing homogeneous Neumann type numerical boundary conditions at an outflow boundary yields a convergent discretization in $\ell^\infty$ for transport equations. We show in particular that the Neumann numerical boun
Externí odkaz:
http://arxiv.org/abs/1811.02229
This article deals with the numerical analysis of the Cauchy problem for the Korteweg-de Vries equation with a finite difference scheme. We consider the Rusanov scheme for the hyperbolic flux term and a 4-points $\theta$-scheme for the dispersive ter
Externí odkaz:
http://arxiv.org/abs/1712.02291
A numerical analysis of upwind type schemes for the nonlinear nonlocal aggregation equation is provided. In this approach, the aggregation equation is interpreted as a conservative transport equation driven by a nonlocal nonlinear velocity field with
Externí odkaz:
http://arxiv.org/abs/1709.09416
We review sharpening methods for finite volume schemes, with an emphasis on the basic structure of sharpening methods. It covers high order methods and non linear techniques for linear advection, Glimm's method, anti-diffusion techniques, the interac
Externí odkaz:
http://arxiv.org/abs/1608.02719
An analysis of the error of the upwind scheme for transport equation with discontinuous coefficients is provided. We consider here a velocity field that is bounded and one-sided Lipschitz continuous. In this framework, solutions are defined in the se
Externí odkaz:
http://arxiv.org/abs/1602.05746
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.