Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Lafforgue, Vincent"'
Autor:
Lafforgue, Vincent, Zhu, Xinwen
We prove that, over any elliptic global Langlands parameter $\sigma$, the cuspidal cohomology groups of moduli stacks of shtukas are given by a formula involving a finite dimensional representation of the centralizer of $\sigma$. It is a first step i
Externí odkaz:
http://arxiv.org/abs/1811.07976
Autor:
Lafforgue, Vincent
We discuss recent developments in the Langlands program for function fields, and in the geometric Langlands program. In particular we explain a canonical decomposition of the space of cuspidal automorphic forms for any reductive group G over a functi
Externí odkaz:
http://arxiv.org/abs/1803.03791
Autor:
Genestier, Alain, Lafforgue, Vincent
We associate to every irreducible representation of a reductive group over a local field of equal characteristics a local Langlands parameter up to semisimplification and prove the compatibility with the global parameterization constructed by the sec
Externí odkaz:
http://arxiv.org/abs/1709.00978
Autor:
Alvarez, Aurélien, Lafforgue, Vincent
Publikováno v:
Annales scientifiques de l'\'ENS. Vol. 51, p. 1389-1398 (2018)
We prove that any hyperbolic group admits a proper affine isometric action on a quotient space of a $\ell^p$ Banach space, for all $p>1$ sufficiently close to 1.
Comment: in French
Comment: in French
Externí odkaz:
http://arxiv.org/abs/1609.09797
Autor:
Alvarez, Aurélien, Lafforgue, Vincent
Publikováno v:
Expositiones mathematicae. Vol. 35, p. 103-118 (2017)
We give a simple and relatively short proof of the following fact: any hyperbolic group admits a proper affine isometric action on a $\ell^p$-space for $p$ large enough. A first proof of this result was given by Guoliang Yu.
Comment: in French
Comment: in French
Externí odkaz:
http://arxiv.org/abs/1609.09480
Autor:
Lafforgue, Vincent
This is a translation in English of version 5 of the article arXiv:1404.3998, which is itself an introduction to arXiv:1209.5352. We explain all the ideas of the proof of the following theorem. For any reductive group G over a global function field,
Externí odkaz:
http://arxiv.org/abs/1404.6416
Autor:
Lafforgue, Vincent
This is an introduction to the article "Chtoucas pour les groupes r\'eductifs et param\'etrisation de Langlands globale", arXiv:1209.5352. We explain all the ideas of the proof. For any reductive group G over a global function field, we use the cohom
Externí odkaz:
http://arxiv.org/abs/1404.3998
Autor:
Lafforgue, Vincent, Naor, Assaf
It is shown that for every $p\in (2,\infty)$ there exists a doubling subset of $L_p$ that does not admit a bi-Lipschitz embedding into $\R^k$ for any $k\in \N$.
Externí odkaz:
http://arxiv.org/abs/1308.4554
Autor:
Lafforgue, Vincent, Naor, Assaf
Let $\H= < a,b | a[a,b]=[a,b]a \wedge b[a,b]=[a,b]b>$ be the discrete Heisenberg group, equipped with the left-invariant word metric $d_W(\cdot,\cdot)$ associated to the generating set ${a,b,a^{-1},b^{-1}}$. Letting $B_n= {x\in \H: d_W(x,e_\H)\le n}$
Externí odkaz:
http://arxiv.org/abs/1212.2107
Autor:
Lafforgue, Vincent
For any reductive group G over a global function field, we use the cohomology of G-shtukas with multiple modifications and the geometric Satake equivalence to prove the global Langlands correspondence for G in the "automorphic to Galois" direction. M
Externí odkaz:
http://arxiv.org/abs/1209.5352