Zobrazeno 1 - 10
of 273
pro vyhledávání: '"Laczkovich, M."'
Autor:
Laczkovich, M.
Let $C({\mathbb R}^n)$ denote the set of real valued continuous functions defined on ${\mathbb R}^n$. We prove that for every $n\ge 2$ there are positive numbers $\lambda _1 , \ldots , \lambda _n$ and continuous functions $\phi_1 ,\ldots , \phi _m \i
Externí odkaz:
http://arxiv.org/abs/2104.13696
Autor:
Laczkovich, M.
We say that a triangle $T$ tiles a polygon $A$, if $A$ can be dissected into finitely many nonoverlapping triangles similar to $T$. We show that if $N>42$, then there are at most three nonsimilar triangles $T$ such that the angles of $T$ are rational
Externí odkaz:
http://arxiv.org/abs/2002.12013
Autor:
Laczkovich, M.
Publikováno v:
In Computational Geometry: Theory and Applications January 2021 92
Autor:
Laczkovich, M.
Publikováno v:
Proceedings of the American Mathematical Society, 2005 Jun 01. 133(6), 1581-1586.
Externí odkaz:
https://www.jstor.org/stable/4097692
Autor:
Humke, P. D., Laczkovich, M.
Publikováno v:
Transactions of the American Mathematical Society, 2005 Jan 01. 357(1), 31-44.
Externí odkaz:
https://www.jstor.org/stable/3845210
Autor:
Laczkovich, M.
Publikováno v:
Proceedings of the American Mathematical Society, 2003 Jul 01. 131(7), 2235-2240.
Externí odkaz:
https://www.jstor.org/stable/1194043
Autor:
Laczkovich, M.
Publikováno v:
Proceedings of the American Mathematical Society, 2002 Oct 01. 130(10), 3085-3089.
Externí odkaz:
https://www.jstor.org/stable/1194627
Autor:
Laczkovich, M., Miller, Arnold W.
A function f:R -> R is approximately continuous iff it is continuous in the density topology, i.e., for any ordinary open set U the set E=f^{-1}(U) is measurable and has Lebesgue density one at each of its points. Denjoy proved that approximately con
Externí odkaz:
http://arxiv.org/abs/math/9411206
Autor:
Laczkovich, M.
Publikováno v:
The American Mathematical Monthly, 1997 May 01. 104(5), 439-443.
Externí odkaz:
https://www.jstor.org/stable/2974737
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.