Zobrazeno 1 - 10
of 283
pro vyhledávání: '"Lacey, Michael T"'
Let $Sf$ be a discrete martingale square function. Then, for any set $V$ of positive probability, we have $\mathbb{E} S(\mathbf{1}_V)^2 \geq \eta \mathbb{P}(V)$ for an absolute constant $\eta >0$. We extend this to wavelet square functions, and discu
Externí odkaz:
http://arxiv.org/abs/2307.05692
Let $ \Pi _{b}$ be a bounded $n$ parameter paraproduct with symbol $b$. We demonstrate that this operator is in the Schatten class $\mathbb S_ p$, $0
Externí odkaz:
http://arxiv.org/abs/2303.15657
Publikováno v:
New York J. Math. 28 (2022) 1448-1462
Given sequence of measure preserving transformations $\{U_k:\,k=1,2,\ldots, n\}$ on a measurable space $(X,\mu)$. We prove a.e. convergence of the ergodic means \begin{equation} \frac{1}{s_1\cdots s_{n}}\sum_{j_1=0}^{s_1-1}\cdots\sum_{j_n=0}^{s_n-1}f
Externí odkaz:
http://arxiv.org/abs/2208.00215
Assume that $ y < N$ are integers, and that $ (b,y) =1$. Define an average along the primes in a progression of diameter $ y$, given by integer $ (b,y)=1 $. \begin{align*} A_{N,y,b} := \frac{\phi (y)}{N} \sum _{\substack{n
Externí odkaz:
http://arxiv.org/abs/2112.07700
Let $ \Lambda $ denote von Mangoldt's function, and consider the averages \begin{align*} A_N f (x) &=\frac{1}{N}\sum_{1\leq n \leq N}f(x-n)\Lambda(n) . \end{align*} We prove sharp $ \ell ^{p}$-improving for these averages, and sparse bounds for the m
Externí odkaz:
http://arxiv.org/abs/2101.10401
We prove a Roth type theorem for polynomial corners in the finite field setting. Let $\phi_1$ and $\phi_2$ be two polynomials of distinct degree. For sufficiently large primes $p$, any subset $ A \subset \mathbb F_p \times \mathbb F_p$ with $ \lvert
Externí odkaz:
http://arxiv.org/abs/2012.11686
Publikováno v:
Tunisian J. Math. 3 (2021) 517-550
Let $f\in \ell^2(\mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=\frac{1}{N}\sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ \ell ^{p}$-improving estimate, for $ 3/2 < p \leq 2$: \begin{equat
Externí odkaz:
http://arxiv.org/abs/1907.05734
Autor:
Chen, Wei, Lacey, Michael T.
For the maximal operator $ M $ on $ \mathbb R ^{d}$, and $ 1< p , \rho < \infty $, there is a finite constant $ D = D _{p, \rho }$ so that this holds. For all weights $ w, \sigma $ on $ \mathbb R ^{d}$, the operator $ M (\sigma \cdot )$ is bounded fr
Externí odkaz:
http://arxiv.org/abs/1812.04952
Let $ Tf =\sum_{ I} \varepsilon_I \langle f,h_{I^+}\rangle h_{I^-}$. Here, $ \lvert \varepsilon _I\rvert=1 $, and $ h_J$ is the Haar function defined on dyadic interval $ J$. We show that, for instance, \begin{equation*} \lVert T \rVert _{L ^{2} (w)
Externí odkaz:
http://arxiv.org/abs/1811.01923