Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Labute, John"'
Autor:
Labute, John
In this article we trace the genesis of a theorem that gives for the first time examples of Galois group $G_S$ of the maximal $p$-extension of $\mathbb{Q}$, unramified outside a finite set of primes not containing $p$, that are of cohomological dimen
Externí odkaz:
http://arxiv.org/abs/2406.08233
Autor:
Labute, John
We show that certain cyclically pinched one-relator groups are residually torsion-free nilpotent.
Externí odkaz:
http://arxiv.org/abs/1503.05167
Autor:
Labute, John
Let p be an odd prime, let S be a finite set of primes q congruent to 1 mod p but not mod p^2 and let G_S be the Galois group of the maximal p-extension of Q un-ramified outside of S. If r is a continuous homomorphism of G_S into GL_2(Z_p) then under
Externí odkaz:
http://arxiv.org/abs/1308.5920
We investigate the relations in Galois groups of maximal p-extensions of fields, the structure of their natural filtrations, and their relationship with the Bloch-Kato conjecture proved by Rost and Voevodsky with Weibel's patch. Our main focus is on
Externí odkaz:
http://arxiv.org/abs/1012.5631
Autor:
Labute, John, Minac, Jan
Using the mixed Lie algebras of Lazard, we extend the results of the first author on mild groups to the case p=2. In particular, we show that for any finite set S_0 of odd rational primes we can find a finite set S of odd rational primes containing S
Externí odkaz:
http://arxiv.org/abs/0903.4383
Autor:
Bush, Michael R., Labute, John
Let p be an odd prime and S a finite set of primes = 1 mod p. We give an effective criterion for determining when the Galois group G=G_S(p) of the maximal p-extension of Q unramified outside of S is mild when |S|=4 and the cup product H^1(G,Z/pZ) \ot
Externí odkaz:
http://arxiv.org/abs/math/0602189
Publikováno v:
J. Algebra 304 (2006), no. 2, 1130--1146
Let p be a prime and F(p) the maximal p-extension of a field F containing a primitive p-th root of unity. We give a new characterization of Demuskin groups among Galois groups Gal(F(p)/F) when p=2, and, assuming the Elementary Type Conjecture, when p
Externí odkaz:
http://arxiv.org/abs/math/0505543
Publikováno v:
Canad. Math. Bull. 50 (2007), no. 4, 588--593
Let p be a prime and F a field containing a primitive pth root of unity. Then for n in N, the cohomological dimension of the maximal pro-p-quotient G of the absolute Galois group of F is <=n if and only if the corestriction maps H^n(H,Fp) -> H^n(G,Fp
Externí odkaz:
http://arxiv.org/abs/math/0411446
Autor:
Labute, John, Mináč, Ján
Publikováno v:
In Journal of Algebra 2011 332(1):136-158
Autor:
Labute, John P.
Publikováno v:
Transactions of the American Mathematical Society, 1985 Mar 01. 288(1), 51-57.
Externí odkaz:
https://www.jstor.org/stable/2000425