Zobrazeno 1 - 10
of 111
pro vyhledávání: '"Labuschagne, Louis"'
We investigate some new classes of operator algebras which we call semi-$\sigma$-finite subdiagonal and Riesz approximable. These constitute the most general setting to date for a noncommutative Hardy space theory based on Arveson's subdiagonal algeb
Externí odkaz:
http://arxiv.org/abs/2307.14815
Publikováno v:
Expositiones Mathematicae (2021)
We give a fresh account of the astonishing interplay between abelian von Neumann algebras, L^\infty-spaces and measure algebras, including an exposition of Maharam's theorem from the von Neumann algebra perspective.
Comment: 60 pages (61 in publ
Comment: 60 pages (61 in publ
Externí odkaz:
http://arxiv.org/abs/2108.06406
Autor:
Labuschagne, Louis, Majewski, W. Adam
The Fokker-Planck equation is a partial differential equation which is a key ingredient in many models in physics. This paper aims to obtain a quantum counterpart of Fokker-Planck dynamics, as a means to describing quantum Fokker-Planck dynamics. Giv
Externí odkaz:
http://arxiv.org/abs/2106.05718
We establish several deep existence criteria for conditional expectations on von Neumann algebras, and then apply this theory to develop a noncommutative theory of representing measures of characters of a function algebra. Our main cycle of results d
Externí odkaz:
http://arxiv.org/abs/2101.04619
Let A be a closed subalgebra of a C*-algebra, that is a closed algebra of Hilbert space operators. We generalize to such operator algebras $A$ several key theorems and concepts from the theory of classical function algebras. In particular we consider
Externí odkaz:
http://arxiv.org/abs/1901.02516
Autor:
de Jager, Pierre, Labuschagne, Louis
Boundedness and compactness properties of multiplication operators on quantum (non-commutative) function spaces are investigated. For endomorphic multiplication operators these properties can be characterized in the setting of quantum symmetric space
Externí odkaz:
http://arxiv.org/abs/1811.00269
Publikováno v:
Family Relations; Dec2024, Vol. 73 Issue 5, p3309-3324, 16p
Publikováno v:
In Advances in Mathematics 12 February 2022 396
Autor:
Blecher, David P., Labuschagne, Louis
We extend Ueda's peak set theorem for subdiagonal subalgebras of tracial finite von Neumann algebras, to sigma-finite von Neumann algebras (that is, von Neumann algebras with a faithful state; which includes those on a separable Hilbert space, or wit
Externí odkaz:
http://arxiv.org/abs/1605.08932
Autor:
Labuschagne, Louis
We show that a Beurling type theory of invariant subspaces of noncommutative $H^2$ spaces holds true in the setting of subdiagonal subalgebras of $\sigma$-finite von Neumann algebras. This extends earlier work of Blecher and Labuschagne for finite al
Externí odkaz:
http://arxiv.org/abs/1604.01968