Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Labrini Hioni"'
Publikováno v:
Archiv der Mathematik. 108:209-221
We prove that there exists an absolute constant $${\alpha > 1}$$ with the following property: if K is a convex body in $${{\mathbb R}^n}$$ whose center of mass is at the origin, then a random subset $${X\subset K}$$ of cardinality $${{\rm card}(X)=\l
Publikováno v:
Advances in Applied Mathematics. 75:116-143
Let $x_1,\ldots ,x_N$ be independent random points distributed according to an isotropic log-concave measure $\mu $ on ${\mathbb R}^n$, and consider the random polytope $$K_N:={\rm conv}\{ \pm x_1,\ldots ,\pm x_N\}.$$ We provide sharp estimates for t
Autor:
Silouanos Brazitikos, Labrini Hioni
Publikováno v:
Journal of Mathematical Analysis and Applications. 425:919-927
Let K be a centered convex body of volume 1 in R n . A direction θ ∈ S n − 1 is called sub-Gaussian for K with constant b > 0 if ‖ 〈 ⋅ , θ 〉 ‖ L ψ 2 ( K ) ⩽ b ‖ 〈 ⋅ , θ 〉 ‖ 2 . We show that if K is isotropic then most di