Zobrazeno 1 - 4
of 4
pro vyhledávání: '"LaMaster, John"'
Autor:
LaMaster, John, Das, Dhritiman, Kofler, Florian, Crane, Jason, Li, Yan, Lasser, Tobias, Menze, Bjoern H
Magnetic resonance spectroscopic imaging is a widely available imaging modality that can non-invasively provide a metabolic profile of the tissue of interest, yet is challenging to integrate clinically. One major reason is the expensive, expert data
Externí odkaz:
http://arxiv.org/abs/2409.06609
Autor:
Kofler, Florian, Ezhov, Ivan, Fidon, Lucas, Horvath, Izabela, de la Rosa, Ezequiel, LaMaster, John, Li, Hongwei, Finck, Tom, Shit, Suprosanna, Paetzold, Johannes, Bakas, Spyridon, Piraud, Marie, Kirschke, Jan, Vercauteren, Tom, Zimmer, Claus, Wiestler, Benedikt, Menze, Bjoern
Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glio
Externí odkaz:
http://arxiv.org/abs/2205.10355
Autor:
Hu, Xiaobin, Ren, Wenqi, LaMaster, John, Cao, Xiaochun, Li, Xiaoming, Li, Zechao, Menze, Bjoern, Liu, Wei
State-of-the-art face super-resolution methods employ deep convolutional neural networks to learn a mapping between low- and high- resolution facial patterns by exploring local appearance knowledge. However, most of these methods do not well exploit
Externí odkaz:
http://arxiv.org/abs/2007.09454
Autor:
LaMaster, John C.1 jlamaster@akingump.com, Hammerson, Marc1 mhammerson@akingump.com
Publikováno v:
Denning Law Journal. 2016, Vol. 28, p9-15. 7p.