Zobrazeno 1 - 10
of 23
pro vyhledávání: '"LaLonde, Scott M."'
Inspired by results for graph $C^*$-algebras, we investigate connections between the ideal structure of an inverse semigroup $S$ and that of its tight $C^*$-algebra by relating ideals in $S$ to certain open invariant sets in the associated tight grou
Externí odkaz:
http://arxiv.org/abs/1710.04696
Autor:
LaLonde, Scott M.
We investigate some consequences of a recent stabilization result of Ionescu, Kumjian, Sims, and Williams, which says that every Fell bundle $C^*$-algebra is Morita equivalent to a canonical groupoid crossed product. First we use the theorem to give
Externí odkaz:
http://arxiv.org/abs/1710.03808
Autor:
LaLonde, Scott M.
A locally compact groupoid is said to be exact if its associated reduced crossed product functor is exact. In this paper, we establish some permanence properties of exactness, including generalizations of some known results for exact groups. Our prim
Externí odkaz:
http://arxiv.org/abs/1703.05190
Autor:
Archer, Kassie, LaLonde, Scott M.
We introduce a new technique to study pattern avoidance in dynamical systems, namely the use of a commuter function between non-conjugate dynamical systems. We investigate the properties of such a commuter function, specifically $h : [0,1] \to [0,1]$
Externí odkaz:
http://arxiv.org/abs/1606.01317
Autor:
LaLonde, Scott M., Milan, David
We investigate recent uniqueness theorems for reduced $C^*$-algebras of Hausdorff \'{e}tale groupoids in the context of inverse semigroups. In many cases the distinguished subalgebra is closely related to the structure of the inverse semigroup. In or
Externí odkaz:
http://arxiv.org/abs/1511.01517
Autor:
LaLonde, Scott M.
Given two locally compact Hausdorff groupoids $G$ and $H$ and a $(G,H)$-equivalence $Z$, one can construct the associated linking groupoid $L$. This is reminiscent of the linking algebra for Morita equivalent $C^*$-algebras. Indeed, Sims and Williams
Externí odkaz:
http://arxiv.org/abs/1411.1027
Autor:
LaLonde, Scott M.
Let $(\mathcal{A}, G, \alpha)$ be a groupoid dynamical system. We show that if $G$ is assumed to be measurewise amenable and the section algebra $A = \Gamma_0(G^{(0)}, \mathcal{A})$ is nuclear, then the associated groupoid crossed product is also nuc
Externí odkaz:
http://arxiv.org/abs/1406.1749
Publikováno v:
In Journal of Algebra 1 April 2019 523:119-153
Autor:
LALONDE, SCOTT M.
Publikováno v:
Journal of Operator Theory, 2015 Jul 01. 74(1), 213-245.
Externí odkaz:
https://www.jstor.org/stable/24718153
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.