Zobrazeno 1 - 7
of 7
pro vyhledávání: '"LYNNELLE YE"'
Autor:
Christopher Birkbeck, Serin Hong, David T. Hansen, Qirui Li, Lynnelle Ye, Tony Feng, Anthony Wang
Publikováno v:
Journal of the Institute of Mathematics of Jussieu
We completely classify the possible extensions between semistable vector bundles on the Fargues-Fontaine curve (over an algebraically closed perfectoid field), in terms of a simple condition on Harder-Narasimhan polygons. Our arguments rely on a care
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::861dacc7b2a976f01859171be3d1689e
http://arxiv.org/abs/1705.00710
http://arxiv.org/abs/1705.00710
Publikováno v:
International Journal of Number Theory. :1563-1578
In his striking 1995 paper, Borcherds found an infinite product expansion for certain modular forms with CM divisors. In particular, this applies to the Hilbert class polynomial of discriminant $-d$ evaluated at the modular $j$-function. Among a numb
Autor:
Nathan Kaplan, Lynnelle Ye
Publikováno v:
Journal of Algebra. 373:377-391
We solve a problem of Komeda concerning the proportion of numerical semigroups which do not satisfy Buchweitz' necessary criterion for a semigroup to occur as the Weierstrass semigroup of a point on an algebraic curve. We also show that the family of
The Green-Tao Theorem, one of the most celebrated theorems in modern number theory, states that there exist arbitrarily long arithmetic progressions of prime numbers. In a related but different direction, a recent theorem of Shiu proves that there ex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58d295bb8f0628e55dc26d1db24762b2
http://arxiv.org/abs/1407.1290
http://arxiv.org/abs/1407.1290
Autor:
Keenan Monks, Lynnelle Ye
Publikováno v:
Integers ISBN: 9783110298116
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::21767474d7ebed47f5858a0fd7c1a577
https://doi.org/10.1515/9783110298161.879
https://doi.org/10.1515/9783110298161.879
Let $f(z)=\sum_{n=1}^\infty \lambda_f(n)e^{2\pi i n z}\in S_{k}^{new}(\Gamma_0(N))$ be a normalized Hecke eigenform of even weight $k\geq2$ on $\Gamma_0(N)$ without complex multiplication. Let $\mathbb{P}$ denote the set of all primes. We prove that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0694bc272a1295b04c1ecdbc8b61d52d
Publikováno v:
International Journal of Number Theory; Sep2013, Vol. 9 Issue 6, p1563-1578, 16p, 2 Charts