Zobrazeno 1 - 10
of 120
pro vyhledávání: '"LUCAS, François"'
Autor:
Lucas, François
Cette thèse, réalisée en collaboration avec Sagem Défense Sécurité, porte sur l'élaboration d'une stratégie de recherche efficace pour la résolution de problèmes de planification d'itinéraires de véhicules. Nous considérons ici en partic
Externí odkaz:
http://www.theses.fr/2012ENMP0027/document
Autor:
Leloup, Gérard, Lucas, Francois
We define and we characterize regular and c-regular cyclically ordered abelian groups. We prove that every dense c-regular cyclically ordered abelian group is elementarily equivalent to some cyclically ordered group of unimodular complex numbers, tha
Externí odkaz:
http://arxiv.org/abs/1312.5269
By a result known as Rieger's theorem (1956), there is a one-to-one correspondence, assigning to each cyclically ordered group $H$ a pair $(G,z)$ where $G$ is a totally ordered group and $z$ is an element in the center of $G$, generating a cofinal su
Externí odkaz:
http://arxiv.org/abs/1311.0499
This paper represents a step in our program towards the proof of the Pierce--Birkhoff conjecture. In the nineteen eighties J. Madden proved that the Pierce-Birkhoff conjecture for a ring A$is equivalent to a statement about an arbitrary pair of point
Externí odkaz:
http://arxiv.org/abs/1207.6463
This paper is a step in our program for proving the Piece-Birkhoff Conjecture for regular rings of any dimension (this would contain, in particular, the classical Pierce-Birkhoff conjecture which deals with polynomial rings over a real closed field).
Externí odkaz:
http://arxiv.org/abs/1003.1188
Let R be a real closed field and A=R[x_1,...,x_n]. Let sper A denote the real spectrum of A. There are two kinds of points in sper A : finite points (those for which all of |x_1|,...,|x_n| are bounded above by some constant in R) and points at infini
Externí odkaz:
http://arxiv.org/abs/0707.2327
Publikováno v:
Manuscripta Mathematica 128 (2009) 505-547
Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise polynomial function f on R^n can be obtained from the polynomial ring R[x_1,...,x_n] by iterating the operations of maximum and minimum. The purpose of this paper is
Externí odkaz:
http://arxiv.org/abs/math/0601671
Autor:
Lucas, FRANÇOIS-XAVIER, Zhang, Zixian
Publikováno v:
法政理論. 55(2):92-105