Zobrazeno 1 - 10
of 246
pro vyhledávání: '"LOZIN, A. V."'
Daligault, Rao and Thomass\'e asked whether every hereditary graph class that is well-quasi-ordered by the induced subgraph relation has bounded clique-width. Lozin, Razgon and Zamaraev (JCTB 2017+) gave a negative answer to this question, but their
Externí odkaz:
http://arxiv.org/abs/1711.08837
Autor:
Blanché, Alexandre, Dabrowski, Konrad K., Johnson, Matthew, Lozin, Vadim V., Paulusma, Daniël, Zamaraev, Viktor
Clique-width is an important graph parameter due to its algorithmic and structural properties. A graph class is hereditary if it can be characterized by a (not necessarily finite) set ${\cal H}$ of forbidden induced subgraphs. We initiate a systemati
Externí odkaz:
http://arxiv.org/abs/1705.07681
Daligault, Rao and Thomass\'e asked whether a hereditary class of graphs well-quasi-ordered by the induced subgraph relation has bounded clique-width. Lozin, Razgon and Zamaraev recently showed that this is not true for classes defined by infinitely
Externí odkaz:
http://arxiv.org/abs/1611.03671
The notion of augmenting graphs generalizes Berge's idea of augmenting chains, which was used by Edmonds in his celebrated solution of the maximum matching problem. This problem is a special case of the more general maximum independent set (MIS) prob
Externí odkaz:
http://arxiv.org/abs/1410.8774
Recently, Daligault, Rao and Thomass\'e asked in [3] if every hereditary class which is well-quasi-ordered by the induced subgraph relation is of bounded clique-width. There are two reasons why this questions is interesting. First, it connects two se
Externí odkaz:
http://arxiv.org/abs/1410.3260
Publikováno v:
SIAM J. Discrete Math. 30 (2016), no. 2, 1015--1031
The paper [J. Balogh, B. Bollob\'{a}s, D. Weinreich, A jump to the Bell number for hereditary graph properties, J. Combin. Theory Ser. B 95 (2005) 29--48] identifies a jump in the speed of hereditary graph properties to the Bell number $B_n$ and prov
Externí odkaz:
http://arxiv.org/abs/1405.3118
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Loupian, E. A.1,2 (AUTHOR), Lozin, D. V.1,2 (AUTHOR) lozin@d902.iki.rssi.ru, Balashov, I. V.1 (AUTHOR), Bartalev, S. A.1,3 (AUTHOR), Stytsenko, F. V.1 (AUTHOR)
Publikováno v:
Cosmic Research. 2022Suppl, Vol. 60, pS46-S56. 11p.
Let $X$ be a family of graphs and $X_n$ the set of $n$-vertex graphs in $X$. A graph $U^{(n)}$ containing all graphs from $X_n$ as induced subgraphs is called $n$-universal for $X$. Moreover, we say that $U^{(n)}$ is a proper $n$-universal graph for
Externí odkaz:
http://arxiv.org/abs/1307.6192
Autor:
Korpelainen, Nicholas, Lozin, Vadim V.
We study bipartite graphs partially ordered by the induced subgraph relation. Our goal is to distinguish classes of bipartite graphs which are or are not well-quasi-ordered (wqo) by this relation. Answering an open question from \cite{Ding92}, we pro
Externí odkaz:
http://arxiv.org/abs/1005.1328