Zobrazeno 1 - 10
of 131
pro vyhledávání: '"LOW, STEPHEN"'
Publikováno v:
Journal of Geometry and Physics 203 (2024)105249
We show that the diffeomorphisms of an extended phase space with time, energy, momentum and position degrees of freedom that leave invariant the symplectic 2-form and and a degenerate orthogonal metric dt^2 locally satisfy Hamilton's equations up to
Externí odkaz:
http://arxiv.org/abs/2308.10766
Publikováno v:
In Journal of Geometry and Physics September 2024 203
Autor:
Low, Stephen G.
The definition of invariant time is fundamental to relativistic symmetry. Invariant time may be formulated as a degenerate orthogonal metric on a flat phase space with time, position, energy and momentum degrees of freedom that is also endowed with a
Externí odkaz:
http://arxiv.org/abs/2104.05392
Autor:
Low, Stephen G.
Quantum symmetries that leave invariant physical transition probabilities are described by projective representations of Lie groups. The mathematical theory of projected representations for topologically connected Lie groups is reviewed and applied t
Externí odkaz:
http://arxiv.org/abs/1909.11126
Autor:
Low, Stephen Andrew
Sex in public: public performances of gay sex examines how (re)presentations of gay sex in the theater challenge, complicate, and interrogate the concepts of public and private in contemporary culture. Specifically, Sex In public argues that (re)pres
Externí odkaz:
http://hdl.handle.net/2152/ETD-UT-2011-05-3176
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Maximal quantum mechanical symmetry: Projective representations of the inhomogenous symplectic group
Autor:
Low, Stephen G.
Publikováno v:
J. Math. Phys. 55, 022105 (2014)
A symmetry in quantum mechanics is described by the projective representations of a Lie symmetry group that transforms between physical quantum states such that the square of the modulus of the states is invariant. The Heisenberg commutation relation
Externí odkaz:
http://arxiv.org/abs/1207.6787
Autor:
Low, Stephen G.
Publikováno v:
2012 J. Phys.: Conf. Ser. 343 012069
The quantum phase leads to projective representations of symmetry groups in quantum mechanics. The projective representations are equivalent to the unitary representations of the central extension of the group. A celebrated example is Wigner's formul
Externí odkaz:
http://arxiv.org/abs/0903.4641
Autor:
Low, Stephen G.
We present a new derivation of Hamilton's equations that shows that they have a symmetry group Sp(2n) *s H(n). Sp(2n) is the symplectic group and H(n) is mathematically a Weyl-Heisenberg group that is parameterized by velocity, force and power where
Externí odkaz:
http://arxiv.org/abs/0903.4397
Autor:
Low, Stephen G.
Publikováno v:
J.Phys.Conf.Ser.284:012045,2011
The maximal symmetry of a quantum system with Heisenberg commutation relations is given by the projective representations of the automorphism group of the Weyl-Heisenberg algebra. The automorphism group is the central extension of the inhomogeneous s
Externí odkaz:
http://arxiv.org/abs/0806.2454