Zobrazeno 1 - 10
of 59
pro vyhledávání: '"LINDELL, ERIK"'
Autor:
Lindell, Erik
The IA-automorphism group is the group of automorphisms of the free group $F_n$ that act trivially on the abelianization $F_n^{\mathrm{ab}}$. This group is in many ways analoguous to Torelli groups of surfaces and their higher dimensional analogues.
Externí odkaz:
http://arxiv.org/abs/2404.06263
Autor:
NISHIMURA, Hirokazu
Publikováno v:
zbMATH Open.
Autor:
Lindell, Erik
We compute the cohomology groups of the automorphism group of the free group $F_n$, with coefficients in arbitrary tensor products of the standard representation $H_1(F_n, \mathbb{Q})$ and its dual, in a range where $n$ is sufficiently large compared
Externí odkaz:
http://arxiv.org/abs/2212.11075
Autor:
Lindell, Erik, Saleh, Bashar
Publikováno v:
Algebr. Geom. Topol. 24 (2024) 2673-2705
We consider in parallel pointed homotopy automorphisms of iterated wedge sums of topological spaces and boundary relative homotopy automorphisms of iterated connected sums of manifolds minus a disk. Under certain conditions on the spaces and manifold
Externí odkaz:
http://arxiv.org/abs/2105.11325
Autor:
Lindell, Erik
In the early 1980's, Johnson defined a homomorphism $\mathcal{I}_{g}^1\to\bigwedge^3 H_1(S_{g},\mathbb{Z})$, where $\mathcal{I}_{g}^1$ is the Torelli group of a closed, connected and oriented surface of genus $g$ with a boundary component and $S_g$ i
Externí odkaz:
http://arxiv.org/abs/2010.06910
Autor:
Lindell, Erik, Willwacher, Thomas
We describe new graphical models of the framed little disks operads which exhibit large symmetry dg Lie algebras.
Externí odkaz:
http://arxiv.org/abs/1809.06918
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
LINDELL, ERIK1 lindell@math.su.se, WILLWACHER, THOMAS2 thomas.willwacher@math.ethz.ch
Publikováno v:
Homology, Homotopy & Applications. 2023, Vol. 25 Issue 1, p265-285. 21p.
Autor:
Lindell, Erik
This thesis consists of three papers, treating stability phenomena in various automorphism groups in topology. In Papers I and III, we study the group (co)homology of certain mapping class groups of surfaces and graphs, or their respective Torelli su
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______263::cc909ef61b4ab822d4f3e8811cfd9b29
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-216273
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-216273
Autor:
Lindell, Erik
Publikováno v:
California Management Review. Summer86, Vol. 28 Issue 4, p27-39. 13p.